
1Physics of fluid motion

O.C. Okoye, B.O. Bolaji
Department of Mechanical Engineering, Federal University, Oye Ekiti, Ikole Ekiti Campus,
Ekiti State, Nigeria

1.1 Introduction

Fluids are made up of molecules that are continuously in motion. Most engineering
applications deal with the average or macroscopic effects of several fluid molecules.
A fluid is regarded as a substance which is infinitely divisible, that is, a continuum,
and the focus are not on the behavior of the respective molecules of the fluid. The
continuum is a theoretical continuous medium used to replace the molecular structure,
when dealing with the relationships of fluid flow on an analytical or mathematical ba-
sis [14]. The continuum hypothesis treats the fluid as being infinitely divisible without
character change. Therefore, material properties like viscosity, density or thermal con-
ductivity, and variables such as pressure, temperature and velocity, can be defined at
a mathematical point as the limit of the mean of the given variable or quantity across
the molecular fluctuations [22].

The method of continuum mechanics is very useful in offering physical explana-
tion and mathematical description of different transport phenomena without the need
to fully understand the internal micro- and nanostructures of fluids [20]. Classical fluid
mechanics is based on the concept of a continuum. When considering the behavior of
fluids under normal conditions, the continuum assumption holds true. In situations
in which the mean free path of the molecules is of the same order of magnitude as
the least significant characteristic dimension, the continuum assumption becomes in-
valid. In such situations, for example, rarefied gas flow, the concept of a continuum is
discarded and the microscopic and statistical viewpoints are adopted [6,32,40]. Solid
structures, as well as fluid flow fields [20], are assumed to be continua insofar as the
local material properties are defined as averages across material elements or volumes
significantly larger than the microscopic length scales of the solid or fluid while being
small in comparison with the macroscopic structure. Mathematically, for the contin-
uum hypothesis to be valid, the following condition must be satisfied [12,22]:

d � V 1/3 � L,

where

d is the length scale which is representative of the microstructure of the fluid, most
often a molecular length scale,
V 1/3 is the characteristic linear dimension of the averaging volume,
L is the macroscopic scale which is typical for spatial gradients in the variables
that were averaged. The size of the flow domain usually dictates the scale of L.
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Adopting the continuum hypothesis, the macroscopic laws of classical continuum
physics are used to give a mathematical description of fluid motion, as well as heat
transfer in systems that are not isothermal. These laws are: the law of conservation
of mass, the law of conservation of linear and angular momentum, and the law of
conservation of energy (i.e., the first law of thermodynamics). While the second law
of thermodynamics is not directly used in the derivation of the governing equations, it
provides constraints on the permissible forms of the constitutive models which relate
the gradients of velocity in the fluid to short-range forces acting across the surfaces
inside the fluid [22,23].

Most theoretical studies in fluid dynamics are based on the concept of a perfect
fluid. A perfect fluid is one that is both frictionless and incompressible. When perfect
fluids move, two fluid layers in contact with each other do not experience tangential
forces (i.e., shearing stresses). However, they act on each other with normal forces
(i.e., pressure) only. Thus, the perfect fluid has no internal resistance to change the
shape of the fluid. The mathematical theory of the motion of a perfect fluid is very
well developed, and gives a description of real fluid motion which is satisfactory in
many situations, for instance, the formation of jets of liquid in air. However, the theory
of perfect fluids cannot explain the drag of a body. In real fluids, the inner layers of
the fluid transmit both tangential and normal stresses, and this is also true near a solid
wall which is in contact with the fluid. Thus, the results obtained from the theory of a
perfect fluid are not acceptable in such situations. The tangential or friction forces in
a real fluid are related to the viscosity of the fluid [16,38].

The viscosity of real fluids can be considerably affected by shear rate, temperature,
pressure, molecular structure, molecular weight, and time of shearing. The viscos-
ity of a gas increases with temperature, but the viscosity of a liquid decreases with
temperature. There are no inviscid fluids in reality [6,28,29]. Nevertheless, in some
situations, the effects of viscosity are relatively small when compared with other
effects. In such situations, therefore, viscous effects can often be neglected. For in-
stance, viscous forces which are developed in flowing water may be several orders of
magnitude less than the forces as a result of other influences like gravity or pressure
differences [28].

There are two ways of analyzing the motion of a mass of fluid upon which forces
act in certain conditions. The equations of the motion of a fluid have been obtained
based on any of the given methods of analysis. One method of analysis is to track the
history of all particles of the fluid, while the other method investigates the velocity,
density, and pressure at every point of space which the fluid occupies at all points in
time. These obtained equations are respectively known as the Lagrangian and Eulerian
forms of the hydrokinetic equations [44].

1.2 The basic equations of viscous flow

Viscous flow equations have been available for over a century. The complete form of
these equations is impossible to solve even with the high computing power of mod-
ern digital computers. The equations for turbulent flow cannot be solved with current
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mathematical techniques since the boundary conditions are randomly dependent on
time [5,43]. Derivations of the equations of fluid dynamics [20] give a more in-depth
understanding of the physics which all of the terms in the final equations mathemati-
cally represent. It also provides insight into the assumptions (or the shortcomings) of
a given mathematical model [1].

White [43] noted that the exact number of fundamental equations of compressible
viscous flow is a matter of personal choice, as some relations are more fundamental
than others. In this chapter, the system is considered to have only three fundamen-
tal relations along with four auxiliary relations. The fluid is assumed to be uniform
and homogeneous in composition. The fundamental equations are the three laws of
conservation for physical systems, namely:

• The law of conservation of mass (continuity)
• The law of conservation of momentum (Newton’s second law)
• The law of conservation of energy (the first law of thermodynamics).

These three fundamental equations are used to obtain three unknowns, which are
[33]:

• The thermodynamic pressure, p

• The absolute temperature, T , and
• The velocity vector, V .

Assuming local thermodynamic equilibrium, p and T are considered to be the two
independent thermodynamic variables needed. In the final forms of the conservation
equations, four additional thermodynamic variables are included. They are the en-
thalpy (or internal energy), density, thermal conductivity, and dynamic viscosity. The
thermodynamic pressure, p, and the absolute temperature, T , can, therefore, be used
to uniquely obtain these additional four variables. The basic equations which will be
derived are largely general and based on the following assumptions [43]:

• The fluid constitutes a (mathematical) continuum.
• The particles of the fluid are basically in thermodynamic equilibrium.
• The conduction of heat is according to Fourier’s law.
• Body forces are only a result of gravity.
• There are no internal sources of heat.

1.2.1 Law of conservation of mass: the continuity equation

The law of conservation of mass relates the density field to the velocity field. An
infinitesimal control volume will be used to derive the law of conservation of mass in
both the rectangular and cylindrical coordinate systems [24].

1.2.2 Derivation of the law of conservation of mass in the
rectangular coordinate system

Consider an infinitesimal cube having dimensions dx, dy, and dz (see Fig. 1.1). At the
center of the cube, O, the density is ρ, and the velocity has components u, v, and w,
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Figure 1.1 Differential control volume in the rectangular coordinate system [35].

in the x, y, and z axes, respectively. By using the truncated Taylor series expansion of
the density multiplied by the normal component of velocity at the midpoint of all the
six faces of the cube gives [4]:

Center of front face: (ρw) ∼= ρw + ∂(ρw)
∂z

dz
2 ,

Center of rear face: (ρw) ∼= ρw − ∂(ρw)
∂z

dz
2 ,

Center of right face: (ρ u) ∼= ρ u + ∂(ρu)
∂x

dx
2 ,

Center of left face: (ρu) ∼= ρu − ∂(ρu)
∂x

dx
2 ,

Center of top face: (ρv) ∼= ρv + ∂(ρv)
∂y

dy
2 ,

Center of bottom face: (ρv) ∼= ρv − ∂(ρv)
∂y

dy
2 .

The mass flow rates through each face of the cube are shown in Fig. 1.2. They were
obtained by calculating the product of the density, the surface area of each face, and
the normal component of velocity at the midpoint of each face. The rate of change of
mass of the control volume as it shrinks to a point is [4]:∫

∂ρ

∂t
dv ∼= ∂ρ

∂t
dxdydz

where dxdydz = volume of the cube. Substituting the appropriate terms into the inte-
gral form of the continuity equation and simplifying gives [6,28,34]:

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0. (1.1)

Eq. (1.1) is the differential form of the conservation of mass equation in the rectangular
coordinate system. It is also referred to as the continuity equation. Eq. (1.1) is valid for
both steady and unsteady flow, as well as for both incompressible and compressible
fluids [28]. In vector notation, Eq. (1.1) is written as [4,7,28]:

∂ρ

∂t
+ ∇ ·ρV = 0. (1.2)
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Figure 1.2 Mass flow rate through each face of the control volume [4].

Figure 1.3 Differential control volume in cylindrical coordinate system [35]. (A) Isometric view; (B) Pro-
jection on rθ plane.

1.2.3 Derivation of the law of conservation of mass in the
cylindrical coordinate system

The differential control volume for the cylindrical coordinate system is shown in
Fig. 1.3. At the center, O, of the control volume, the density is ρ and the compo-
nents of the velocity in the r , θ , and z directions are Vr , V θ , and Vz, respectively.
Using the truncated Taylor series expansion, the mass flux through the six faces of the
control volume is given in Table 1.1. The components of velocity in the r , θ , and z

directions are assumed to be in the positive direction.
Thus, the net rate of mass flux going out through the control surface is [26,41]:

[
ρVr + r

∂ρVr

∂r
+ ∂ρVθ

∂θ
+ r

∂ρVz

∂z

]
drdθdz.
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Since the volume of the fluid element is “rdθdrdz” and the density within the con-
trol volume is ρ, the rate at which mass changes within the control volume is:

∂ρ

∂t
rdθdrdz.

The differential equation for the conservation of mass in the cylindrical coordinate
system becomes

ρVr + r
∂ρVr

∂r
+ ∂ρVθ

∂θ
+ r

∂ρVz

∂z
+ r

∂ρ

∂t
= 0,

or

∂(rρVr)

∂r
+ ∂ρVθ

∂θ
+ r

∂ρVz

∂z
+ r

∂ρ

∂t
= 0.

By dividing through by r , the equation becomes

∂ρ

∂t
+ 1

r

∂(rρVr)

∂r
+ 1

r

∂(ρVθ )

∂θ
+ r

∂(ρVz)

∂z
= 0. (1.3)

In vector notation, Eq. (1.3) is

∂ρ

∂t
+ ∇ ·ρV = 0.

1.3 Momentum equation

By applying Newton’s second law to an infinitesimal particle of fluid having mass dm,
the differential form of the momentum equation can be derived. Newton’s second law
for a finite system is

F = dP

dt
,

where F is the net force acting on the system and P is the linear momentum of the
system. Rewriting Newton’s second law for an infinitesimal system having mass dm

gives [6]

dF = dm
dV

dt
.

Since the acceleration of an element of fluid having mass dm, which moves in a
velocity field, is given by

a = DV

Dt
= ∂V

∂t
+ u

∂V

∂x
+ v

∂V

∂y
+ w

∂V

∂z
,



Table 1.1 Mass flux through the control surface of a cylindrical differential control volume [6].

Surface
∫

ρV ·dA

Inside (−r) = −
[
ρ −

(
∂ρ
∂r

)
dr
2

][
Vr −

(
∂Vr
∂r

)
dr
2

](
r − dr

2

)
dθdz = −ρVrrdθdz + ρVr

dr
2 dθdz + ρ

(
∂Vr
∂r

)
r dr

2 dθdz + Vr

(
∂ρ
∂r

)
r dr

2 dθdz

Outside (+r) =
[
ρ +

(
∂ρ
∂r

)
dr
2

][
Vr +

(
∂Vr
∂r

)
dr
2

](
r + dr

2

)
dθdz = ρVrrdθdz + ρVr

dr
2 dθdz + ρ

(
∂Vr
∂r

)
r dr

2 dθdz + Vr

(
∂ρ
∂r

)
r dr

2 dθdz

Front (−θ) = −
[
ρ −

(
∂ρ
∂θ

)
dθ
2

][
Vθ −

(
∂Vθ
∂θ

)
dθ
2

]
drdz = −ρVθdrdz + ρ

(
∂Vθ
∂θ

)
dθ
2 drdz + Vθ

(
∂ρ
∂θ

)
dθ
2 drdz

Back (+θ) =
[
ρ +

(
∂ρ
∂θ

)
dθ
2

][
Vθ +

(
∂Vθ
∂θ

)
dθ
2

]
drdz = ρVθdrdz + ρ

(
∂Vθ
∂θ

)
dθ
2 drdz + Vθ

(
∂ρ
∂θ

)
dθ
2 drdz

Bottom (−z) = −
[
ρ −

(
∂ρ
∂z

)
dz
2

][
Vz −

(
∂Vz

∂z

)
dz
2

]
rdθdr = −ρVzrdθdr + ρ

(
∂Vz

∂z

)
dz
2 rdθdr + Vz

(
∂ρ
∂z

)
dz
2 rdθdr

Top (+z) =
[
ρ +

(
∂ρ
∂z

)
dz
2

][
Vz +

(
∂Vz

∂z

)
dz
2

]
rdθdr = ρVzrdθdr + ρ

(
∂Vz

∂z

)
dz
2 rdθdr + Vz

(
∂ρ
∂z

)
dz
2 rdθdr

Then,
∫

ρV ·dA =
[
ρVr + r

{
ρ

(
∂Vr
∂r

)
+ Vr

(
∂ρ
∂r

)}
+

{
ρ

(
∂Vθ
∂θ

)
+ Vθ

(
∂ρ
∂θ

)}
+ r

{
ρ

(
∂Vz

∂z

)
+ Vz

(
∂ρ
∂z

)}]
drdθdz

or
∫

ρV ·dA =
[
ρVr + r

∂ρVr
∂r

+ ∂ρVθ
∂θ

+ ∂ρVz

∂z

]
drdθdz
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Figure 1.4 Stresses in the x direction on a fluid element [35].

Newton’s second law can be written as [6]

dF = dm
DV

Dt
= dm

[
∂V

∂t
+ u

∂V

∂x
+ v

∂V

∂y
+ w

∂V

∂z

]
. (1.4)

In order to obtain expressions for the forces acting on the fluid element in the three
coordinate directions, consider the element of fluid shown in Fig. 1.4. In the figure
only the x component of the stresses which result in the x component of the surface
forces are shown. The fluid element is of mass dm and volume dxdydz. The stresses
at the center of the fluid element are σxx , τyx , τzx , and the stresses (obtained using
the truncated Taylor’s series expansion about the fluid element’s center) which act on
all the six faces of the fluid element in the x direction are shown in Fig. 1.4. The net
surface force in the x direction is obtained by summing the forces in that direction:

dFSx =
(

σxx + ∂σxx

∂x

dx

2

)
dydz −

(
σxx − ∂σxx

∂x

dx

2

)
dydz

+
(

τyx + ∂τyx

∂y

dy

2

)
dxdz −

(
τyx − ∂τyx

∂y

dy

2

)
dxdz

+
(

τzx + ∂τzx

∂z

dz

2

)
dxdy −

(
τzx − ∂τzx

∂z

dz

2

)
dxdy.

Simplifying this equation gives

dFSx =
(

∂σxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
dxdydz.

If the force due to gravity is assumed to be the only body force acting on the fluid
element, then the net force in the x direction, dFx , is as presented below. The expres-
sions for the force components in the y and z directions are derived in a similar way,
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and are presented as:

dFx = dFBx + dFSx =
(

ρgx + ∂σxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
dxdydz, (1.5a)

dFy = dFBy + dFSx =
(

ρgy + ∂τxy

∂x
+ ∂σyy

∂y
+ ∂τzy

∂z

)
dxdydz, (1.5b)

dFz = dFBz + dFSz =
(

ρgz + ∂τxz

∂x
+ ∂τyz

∂y
+ ∂σzz

∂z

)
dxdydz. (1.5c)

Substituting the expressions for the components of the force in the x, y, and z

directions into Eq. (1.4) gives the general differential equations of motion for fluids.
The equations are valid for any fluid which satisfies the continuum assumption. These
equations are presented as [6,28]:

ρgx + ∂σxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
= ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
, (1.6a)

ρgy + ∂τxy

∂x
+ ∂σyy

∂y
+ ∂τzy

∂z
= ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
, (1.6b)

ρgz + ∂τxz

∂x
+ ∂τyz

∂y
+ ∂σzz

∂z
= ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
. (1.6c)

1.3.1 Constitutive relations for the equation of motion for
Newtonian fluids

The constitutive relations applicable to Newtonian fluids are [8]:

σii = −P + 2μ
∂ui

∂xi

+ l∇ ·V , (1.7)

τij = τji = μ

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (1.8)

where i and j are the indices that represent the components of the Cartesian coordi-
nates. For Newtonian fluids, the shear stresses are proposed to be directly proportional
to the time rate of deformation of an element of a fluid with the viscosity coefficient
m being the factor of proportionality [19]. From Stoke’s assumption, the coefficient of
bulk viscosity, l, is given by [8,9,43]

l = −2

3
μ. (1.9)
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Thus, in the rectangular coordinate system [19] and [8]:

τxy = τyx = μ

(
∂v

∂x
+ ∂u

∂y

)
, (1.10a)

τyz = τzy = μ

(
∂w

∂y
+ ∂v

∂z

)
, (1.10b)

τzx = τxz = μ

(
∂u

∂z
+ ∂w

∂x

)
, (1.10c)

σxx = −p − 2

3
μ∇ ·V + 2μ

∂u

∂x
, (1.11a)

σyy = −p − 2

3
μ∇ ·V + 2μ

∂v

∂y
, (1.11b)

σzz = −p − 2

3
μ∇ ·V + 2μ

∂w

∂z
, (1.11c)

where p is the local thermodynamic pressure. The thermodynamic pressure is linked
to the temperature and density by the equation of state [6]. In most applications, p is
the only variable of importance. For a fluid with constant density, the second term
in the normal stress equations is always zero. Only in cases of very large gradients of
velocity in the orientation of the stress, in the last term of the normal stress equations is
p significantly different from σ . In the analysis of a normal shock wave, for instance,
all three terms in the shear stress equations are significant [8,19]. In concise form, the
Cartesian stress tensor elements can be written as

σij = −
(

p + 2

3
μ

∂uk

∂xk

)
δij + μ

(
∂ui

∂xj

+ ∂uj

∂xi

)
.

The Newtonian fluid stress tensor elements in cylindrical coordinates are presented
below:

τrr = μ

(
2
∂ur

∂r

)
+ l∇ ·V , (1.12)

τθθ =
[

2

(
1

r

∂uθ

∂θ
+ ur

r

)]
+ l∇ ·V , (1.13)

τzz = μ

(
2
∂uz

∂z

)
+ l∇ ·V , (1.14)

τrθ = τθr = μ

[
r

∂

∂r

(uθ

r

)
+ 1

r

∂ur

∂θ

]
, (1.15)

τθz = τzθ = μ

[
1

r

∂uz

∂θ
+ ∂uθ

∂z

]
, (1.16)
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τzr = τrz = μ

[
∂ur

∂z
+ ∂uz

∂r

]
. (1.17)

1.3.2 Equations of motion for Newtonian fluids: Navier–Stokes
equations

Substituting the expressions for the stresses into the differential equations of motion
(i.e., Eq. (1.4)) gives the Navier–Stokes equations presented below [8,30]:

ρ
Du

Dt
= ρgx − ∂p

∂x
+ ∂

∂x

[
μ

(
2
∂u

∂x
− 2

3
∇ ·V

)]
+ ∂

∂y

[
μ

(
∂u

∂y
+ ∂v

∂x

)]

+ ∂

∂z

[
μ

(
∂w

∂x
+ ∂u

∂z

)]
,

ρ
Dv

Dt
= ρgy − ∂p

∂y
+ ∂

∂x

[
μ

(
∂u

∂y
+ ∂v

∂x

)]
+ ∂

∂y

[
μ

(
2
∂v

∂y
− 2

3
∇ ·V

)]

+ ∂

∂z

[
μ

(
∂v

∂z
+ ∂w

∂y

)]
,

ρ
Dw

Dt
= ρgz − ∂p

∂z
+ ∂

∂x

[
μ

(
∂w

∂x
+ ∂u

∂z

)]
+ ∂

∂y

[
μ

(
∂v

∂z
+ ∂w

∂y

)]

+ ∂

∂z

[
μ

(
2
∂w

∂z
− 2

3
∇ ·V

)]
.

For incompressible flow having constant viscosity, the Navier–Stokes equations
become [4,9,27,28]:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρgx − ∂p

∂x
+ μ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
, (1.18a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρgy − ∂p

∂y
+ μ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
, (1.18b)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρgz − ∂p

∂x
+ μ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
.

(1.18c)

The Navier–Stokes equations for constant viscosity and density are presented be-
low in the cylindrical coordinate system [9,17,18]:

(r component)

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z

)
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= ρgr − ∂p

∂r
+ μ

{
∂

∂r

(
1

r

∂

∂r
[rvr ]

)
+ 1

r2

∂2vr

∂θ2
− 2

r2

∂vθ

∂θ
+ ∂2vr

∂z2

}
, (1.19)

(θ component)

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vrvθ

r
+ vz

∂vθ

∂z

)

= ρgθ − 1

r

∂p

∂θ
+ μ

{
∂

∂r

(
1

r

∂

∂r
[rvθ ]

)
+ 1

r2

∂2vθ

∂θ2
+ 2

r2

∂vr

∂θ
+ ∂2vθ

∂z2

}
,

(1.20)

(z component)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)

= ρgz − ∂p

∂z
+ μ

{
1

r

∂

∂r

(
r
∂vz

∂r

)
+ 1

r2

∂2vz

∂θ2
+ ∂2vz

∂z2

}
. (1.21)

1.3.3 Constitutive equations for non-Newtonian fluids

Non-Newtonian fluids like large molecular weight polymers which do not follow the
constitutive equations for Newtonian fluids are common in the chemical and plastics
industry. Substances such as paints, toothpastes, and lubricants show non-Newtonian
behavior. Such fluids display effects like climbing of a rod which rotates in a stationary
fluid container, turning into semisolid under the application of an electric or magnetic
field and die swell when leaving a tube [24].

As [10] noted, with the continuous increase in the use of plastics in the modern
society, being able to predict their behavior is of immense economic value in manu-
facturing processes. The manner in which non-Newtonian viscosity varies with shear
rate is remarkable, and cannot be neglected in modeling stress which acts when molten
polymers and many biomedical and industrial materials flow. In such flow systems, the
viscosity changes in a very considerable manner. The stress–velocity relationship for
Newtonian fluids is not valid for such systems, since the viscosity changes. Therefore,
these systems need a different non-Newtonian constitutive equation [27]. Various the-
oretical models have been proposed within the past century; however, prediction of
the flow behavior of non-Newtonian fluids is not adequate. In practice, the parameters
of a particular constitutive model are obtained from conducting some simple experi-
ments. More experiments are then used to validate the predictions of the given model
on other flow geometries. In most cases, the predictions are correct for a handful of
simple flows with character very similar to those from which the variables of the given
constitutive model were obtained. More studies are still required about the behavior
of non-Newtonian fluids [13].

Non-Newtonian fluids display certain characteristics like normal stress effects and
shear thinning, so that one single constitutive relation is not adequate for the de-
scription of the various phenomena [39]. Morrison [27] noted that the study of non-
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Newtonian effects is a complete branch of knowledge on its own, and a considerable
number of constitutive models have been proposed for non-Newtonian fluids. Morri-
son [27] discusses only two classes of non-Newtonian constitutive equations, namely,
inelastic and viscoelastic. Most of the nomenclature employed in the field is based on
simple experiments in which the substance is subjected to simple extension or in sim-
ple shear. Classifications on the basis of such experiments are presented in Table 1.2.
As presented there, between elastic solids and Newtonian fluids, a succession of ef-
fects is shown having different forms which find application in drag reduction and
drug delivery among other applications [10].

The constitutive equation for an incompressible and isotropic non-Newtonian fluid
is given in Eq. (1.22). Fluids which obey this equation are called second-order Rivlin–
Erickson fluids [42]:

T = −pI + μ1A1 + μ2 (A1 ·A1) + μ3A2, (1.22)

where

T is the complete stress tensor,
An are Rivlin–Erickson tensors,
μ1 is Newtonian viscosity,
μ2 is cross-viscosity,
μ3 is elastico-viscosity.

For flows characterized by only stress and rate of deformation, the most widespread
form of constitutive equation is given in Eq. (1.23). This relation describes Stokesian
fluids, and in certain instances Reiner–Rivlin fluids [10]:

τij = (−p + μ′∇ ·V )
δij + μδij + μ′′dikdkj , (1.23)

where μ′′ is additional viscosity coefficient.
The constitutive equation for advanced Bingham fluids, or occasionally visco-

plastic fluids, is [37]:

τij = Tij if TijTjk ≤ T2, or

τij = Tij + (−p + ∇ ·V ) δij + μdij if
1

2
TmnTmn > T2.

For the latter equation,

Tij = 2T√
2TmnTmn

dij , (1.24)

where Tij is yield stress tensor component, T is yield stress based on the von Mises
yield criterion.



Table 1.2 Classification of non-Newtonian fluids [10].

Type of fluid Classification Stress/rate of deformation behavior Examples
Elastic solids Hookean Linear stress–strain relation Most solids below the yield stress

Plastic solids Perfectly plastic Strain continues with no additional stress Ductile metals stressed above the yield point
Bingham plastic Behaves Newtonian when threshold in exceeded Iron oxide suspensions
Visco-plastic Yield like the Bingham plastic, but the relation

between stress and rate of deformation is not
linear

Drilling mud, nuclear fuel slurries, mayonnaise,
toothpaste, blood

Yield dilatanta Dilatant when threshold shear is exceeded
Visco-elastic Exhibits both viscous and elastic effects Egg white, polymer melts, and solutions

Power-law fluids Shear thinning Apparent viscosity reduces as shear rate increases Some colloids, clay, milk, gelatin, blood, liquid
cement, molten polystyrene, polyethylene oxide
in water

Dilatant or shear
thickening

Apparent viscosity increases as shear rate
increases

Concentrated solutions of sugar in water,
suspensions of rice or cornstarch, solutions of
certain surfactants

Time-dependent
viscosity

Rheopectic Apparent viscosity increases the longer stress is
applied

Some lubricants

Thixotropic Apparent viscosity decreases the longer stress is
applied

Nondrip paints, tomato ketchup

Electromagnetic Electrorheologic Becomes dilatant when an electric field is applied Melted chocolate bars, single – or polycrystalline
suspensions in insulating fluids

Magnetorheo-
logic

Becomes dilatant when an magnetic field is
applied

Colloids with nanosize silica particles suspended
in polyethylene glycol

Newtonian fluids Linear stress-rate of deformation relationship Water, air
a Dilatant here refers to shear thickening as stress increases.
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1.3.4 The law of conservation of energy (the first law of
thermodynamics)

From the first law of thermodynamics applied to the system, the sum of the work and
heat supplied to the system will give rise to an increase in the energy of the system as
presented mathematically by

dEt = dQ + dW, (1.25)

where

Et is the total energy possessed by the system,
Q is heat added to the system, and
W is work done on the system.

For a flowing fluid particle, the total energy is the sum of the internal, kinetic, and
potential energy. Therefore, the energy per unit volume in this case is

Et = ρ

(
e + 1

2
V 2 − g · r

)
, (1.26)

where

e is the internal energy per unit mass and
r is the displacement of the particle.

Writing the energy equation as a time rate of change, which follows the particle of a
fluid, gives:

DEt

Dt
= DQ

Dt
+ DW

Dt
, (1.27)

or

DEt

Dt
= ρ

(
De

Dt
+ V

DV

Dt
− g ·V

)
. (1.28)

The heat and work transfer on a differential fluid element is shown in Fig. 1.5. For
some materials, Fourier’s law is the constitutive relation for thermal energy diffusion
within the molecules of the material [8,10]. Assuming that heat transfer to the element
is given by Fourier’s law yields

q = −k∇T . (1.29)

Considering heat flow in the x-direction as shown in Fig. 1.5, the heat flow into the
element is “qxdydz” and the heat flow out of the element is(

qx + ∂qx

∂x
dx

)
dydz.
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Figure 1.5 Exchange of heat and work on the left- and right-hand sides of an element of fluid.

Similarly, by obtaining the heat flow in the y- and z-directions, respectively, the net
heat transfer to the element is

−
(

∂qx

∂x
+ ∂qy

∂y
+ ∂qz

∂z

)
dxdydz. (1.30)

If internal heat generation is neglected, dividing Eq. (1.30) by the element of vol-
ume dxdydz gives [43]

DQ

Dt
= −divq = +div (k∇T ) . (1.31)

From Fig. 1.5, the net rate of work done on the element of fluid per unit volume is
[11]

DW

Dt
= −divw

= ∂

∂x

(
uτxx + vτxy + wτxz

) + ∂

∂y

(
uτyx + vτyy + wτyz

)
+ ∂

∂z

(
uτzx + vτzy + wτzz

)
,

or

DW

Dt
= ∇ · (V ·τ ij

)
. (1.32)

Decomposing the expression above yields

∇ · (V · τij

) = V · (∇ · τij

) + τij

∂ui

∂xj

. (1.33)

But from the momentum equation [8,43],

ρ
DV

Dt
= ρg + ∇ · τij , (1.34)
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so that the first term on the right-hand side of Eq. (1.5) can be written as [43]

ρ

(
V

DV

Dt
− g ·V

)
.

Substituting the appropriate terms for DEt

Dt
(Eq. (1.28)), DQ

Dt
(Eq. (1.31)), and DW

Dt
(Eq. (1.33)) into Eq. (1.27) gives a form of the first law of thermodynamics commonly
used for fluid motion [43]:

ρ
De

Dt
= div (k∇T ) + τij

∂ui

∂xj

. (1.35)

A more well-known form of Eq. (1.35) can be obtained by noting that [8]

τij

∂ui

∂xj

= −p divV + τ ′
ij

∂ui

∂xj

, (1.36)

where the elements of the viscous stress dyadic tensor for Newtonian fluids in the
rectangular coordinate system are [8]

τ ′
ij = μ

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ δij divV, (1.37)

from the continuity equation (Eq. (1.2)), the following can be obtained:

p divV = −p

ρ

Dρ

Dt
= ρ

D

Dt

(
p

ρ

)
− Dp

Dt
. (1.38)

Joining Eqs. (1.36) and (1.38) gives

ρ
D

Dt

(
e + p

ρ

)
= Dp

Dt
+ div (k∇T ) + τ ′

ij

∂ui

∂xj

= Dp

Dt
+ div (k∇T ) + μΦ. (1.39)

The last term in Eq. (1.39) is the viscous dissipation term, and Φ is the dissipation
function.

For a Newtonian fluid, the dissipation function in the Cartesian coordinate system
is [3,8,38])

Φ = 2

[(
∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2
]

+
[

∂v

∂x
+ ∂u

∂y

]2

+
[
∂w

∂y
+ ∂v

∂z

]2

+
[
∂u

∂z
+ ∂w

∂x

]2

− 2

3

[
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

]2

. (1.40)

The dissipation function in the cylindrical coordinate system is [3]

Φ = 2

[(
∂vr

∂r

)2

+
(

1

r

∂vθ

∂θ
+ vr

r

)2

+
(

∂vz

∂z

)2
]

+
[
r

∂

∂r

(vθ

r

)
+ 1

r

∂vr

∂θ

]2
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+
[

1

r

∂vz

∂θ
+ ∂vθ

∂z

]2

+
[
∂vr

∂z
+ ∂vz

∂r

]2

− 2

3

[
1

r

∂ (rvr)

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z

]2

.

(1.41)

In boundary-layer flows, the enthalpy is, in general, more useful than the internal
energy; and the term Dp

Dt
in Eq. (1.39) is usually negligible, while the term p div V

in Eq. (1.36) cannot be neglected. Normally, the viscous dissipation term is neglected
unless the system has large velocity gradients [3].

1.3.5 The second law of thermodynamics: entropy production

The second law of thermodynamics is essentially [20] given by

	Stotal = 	Ssystem + 	Ssurrounding ≡ Sgen > 0. (1.42)

The entropy, S, gives an indication of the extent of molecular material randomness,
and for a process to take place or for a device to function, Sgen (entropy production)
must be greater than zero. Heat transfer causes the change of entropy. The greater
the value of Sgen, the lower the efficiency of the device, process, or system [20]. The
change of entropy is given by [21,43]

T ds = de + pdv = de − p

ρ2
dρ. (1.43)

For a particle of fluid, the rate of change of entropy is [21]

T
DS

Dt
= De

Dt
− p

ρ2

Dρ

Dt
. (1.44)

Putting the internal energy and continuity equations into Eq. (1.44) gives [21]

ρ
DS

Dt
= − 1

T

∂qi

∂xi

+ ∅
T

= − ∂

∂xi

(qi

T

)
− qi

T 2

∂T

∂xi

+ ∅
T

. (1.45)

By utilizing Fourier’s law of heat conduction, this equation becomes

ρ
DS

Dt
= − ∂

∂xi

(qi

T

)
+ k

T 2

(
∂T

∂xi

)2

+ ∅
T

. (1.46)

The gain of entropy as a result of reversible heat transfer is the first term on the
right-hand side of the equation. The second term represents the entropy production
because of heat conduction while the last term represents the entropy production as a
result of viscous heat generation. Since the second law of thermodynamics demands
that the entropy production as a result of irreversible phenomena be positive, μ and
k are greater than zero. For inviscid flow which does not conduct heat, entropy is
conserved along the paths of the fluid particles [21].
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1.4 Velocity slip and temperature jump

If the fluid that makes contact with a solid surface is a liquid, the molecules of the
liquid are very closely packed and their mean free path is very small, so that the
particles of a fluid which makes contact with the surface are basically in equilibrium
with the surface. Thus, the fluid particles stick to the surface and get into thermal
equilibrium with the surface. Both boundary conditions are referred to as no-slip and
no-temperature jump conditions, respectively. For the case in which the fluid is a gas,
and the molecules of the gas have large mean free path, the no-slip, no-temperature
jump boundary conditions will not hold [36,43]. The slip velocity, uw, is

uw ≈ 3

2

μ

ρa

τw

μ
, (1.47)

where a is the speed of sound in the gas. Dividing by the free stream velocity, U , and
rearranging gives

uw

U
≈ 3

4

U

a

2τw

ρU2
= 0.75MaCf , (1.48)

where

Ma is Mach number of the free stream and
Cf is the flow’s skin-friction coefficient.

For turbulent flow, Cf is not greater than 0.005, and this value decreases as the Mach
number increases, so that it may be concluded that for turbulent boundary layer uw

is approximately equal to zero. Thus, the no-slip condition applies, and for laminar
boundary layer, the skin friction coefficient is approximately [6]

Cf ≈ 0.6Re
− 1

2
x , (1.49)

where Rex is the local Reynolds number. Combining Eqs. (1.48) and (1.49) gives for
laminar boundary layer [31]

uw

U
≈ 0.4Ma√

Rex

. (1.50)

Thus, for large Mach numbers and small Reynolds numbers, considerable slip can
be obtained. As the flow moves further downstream over the solid boundary, the value
of Rex increases, so that slip is no longer significant [2]. Similar to velocity slip, if the
mean free path for the flow of a gas is large in comparison with the flow dimensions,
the effect of temperature jump occurs. This effect occurs because some gas molecules
on the solid surface do not come into thermal equilibrium with it [15,43]. The expres-
sion of the kinetic theory for the temperature jump, Tgas − Tw, is

Tgas − Tw ≈
(

2

α
− 1

)
2γ

γ + 1

lk

μcp

(
dT

dy

)
w

, (1.51)
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where

Tgas is the temperature of the gas,
Tw is the temperature of the solid surface,
l is the mean free path of gas molecules,
γ is the specific heat ratio, and
α is the thermal-accommodation coefficient, defined as follows [15]:

α = Ei − Er

Ei − Ew

, (1.52)

where

Ei is the energy of the molecules which strike the surface,
Er is the energy of the molecules which were reflected from the surface, and
Ew is the energy which the molecules would possess if the molecules attained the
temperature of the surface and had the same amount of energy as the surface.

The values of α must be obtained experimentally, and experimental results reveal that
the value of α is approximately one [15,43]. Thus, taking the value of α as one and
substituting appropriate values for l and dT

dy
(from Fourier’s law); applying Reynolds

analogy and taking γ = 1.4 for air, gives the following relation for the temperature
jump divided by the driving temperature difference controlling the wall heat transfer,
Tr − Tw:

Tgas − Tw

Tr − Tw

= 0.87MaCf . (1.53)

Therefore, it is seen that in turbulent flow, temperature jump is insignificant. In
laminar flow, temperature jump is very small, except in regions that are very close to
the leading edge of a flow which has a high Mach number. Usually, the no-slip and
no-temperature jump boundary conditions are used in regular analysis of viscous flow
of gases [25].
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