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Abstract

'This project work examines the use of Lagrange multipliers to calculus of

variation (isoperimetric problem). Basic definition of terms were given, nec-
essary and sufficient condition for a function to be maxima or minima, how

of largange multipliers, Lagrange multiplier in unconstraint and constraint
problems, theorems and proof related to Lagrange multipliers. Literature
review, Euler’s Multiplier rule and isoperimetric problem, proof’s motivated
by Euler and Lagra.nge‘ the power system economic operation.

Methods of solving Lagrange function, i also included derivation of Euler-
Lagrange equation and othoer form’s of Euler equation, extremal,calculus of
variation, isoperimetric problems and method for solving extrema of a given
function (minimum and maximum) were examined. Numerical examples
were provided.
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Chapter 1

'Introduction

Lagrange multipliers are useful techniques in multivariate calculus, one of the
most common problems in calculus is that of finding minima and maxima
(in general extrema) of a function, Lagrange multiplier is a powerful method
for solving these kind of problems. Mathematical optimization, according
to Joseph Louis Lagrange, is a strategy for finding the maxima and minima,
of a function subject to equality and inequality constraints. For instance
- f(xo, 21,5, ..., x,) subject to a constraint g(zy, zy, s, ...,z,) = 0, where ¥
and g are functions with continuous first partial derivatives. We introduce a
new variable \ called Lagrange multiplier and study the Lagrangian function
as defined below.

Az, y, ) = f(zo, 21, 29, ..., Tn) + Ag(To, 21, Ty, ..., 2,,)

If (z9,y0) is a maximum of f(z,y) for the constrained problem, then there
exist Ao Such that (24,70, \¢) are the stationary points for the Lagrange
function (stationary points are those points where the partial derivatives are
Zero).

However, not all the stationary points yield a solution of the original problem,
thus the method of Lagrange multipliers yields a necessary condition and
Sufficient conditions for constrained problems.

1.1 Aims And Objectives Of The Study

The aims and objectives of the study are to know the method of Lagrange
multiplier, when to use and apply it to different fields specifically in calculus
~of variation (isoperimetric problem) finding the maximum and minimum of
a multivariate function under some specific conditions known as constraints




1.2 Relevance Of The Study

Lagrange multiplier is widely used to solve extrema value problems in field of
science, social science and engineering. It also helps in getting the stationary
point or critical point, minima and maxima of a given function, it plays
. an important role in our everyday life activities e.g.like finding the shortest
distance of a location.

1.3 Range Of The Study

The study will highlight some uses and applications of Lagrange multipliers
most especially in calculus of varjation(isoperimetric problems).

1A Defiition OFf Torms

Before we can see why the method of Lagrange multipliers work the way it
works, there are some terms we need to understand for the unconstrained
optimization problems.

. Gradient Of A Function Of Two Variables

A gradient is just a vector that collects all functions of partial first
derivatives in one place, in mathematics a gradient is a generalization
of a function in one dimension to a function in several dimensions.

Definition

Let Z = f(z,y) be a function such that fy and f, exist. Then the
gradient of f denoted by Vf(x,y) are vectors of the two variables.

VI@,y) = fula,y) + fy(2,y)
Vf is read as "delf” another notation for the gradient is grad f(z,y)

e Stationary Point
A function,either single variable or multivariate is said to be at station-
ary point or (critical point) if given a function y = f (x) such that

df
gy el
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In the case of a function y = f(x) of a single variable a stationary point
can be any of the following three

1. maximum point

2. minimum point

3. inflection point
But for a function of two variables y = f(z,y), the stationary point
can be

1. maximum point

2. minimum point

3. saddle point

Maxima And Minima Of A Function

A function f(z,y) is said to be maximum at a point (2, o), if f(x0,%o)
> f(z,y) for all (z,y) in the neighborhood of (o, o).
A function f(z,y) is said to be minimum at a point (zg, yo), if f(xo, yo)
< f(z,y) for all (z,y) in the neighborhood of (zg, yo).

Local Maximum And Local Minimum

Function can have hills and valleys i.e. places where they reach min-
imum or maximum values. It may be the minimum or maximum for
the whole function but locally (maximum or minimum)as shown in
figure(1) of the appendix

Definition

Local maximum is where the height of the function at a is greater than
(or equal to) the height anywhere else in that interval i.e.f(a) > f(x)
for all # in the interval.In other word, there is no height greater than
f(a), as shown in figure(2) in the appendix




Definition

Local minimum: This is the point where the height of the function at
a is lesser than (or equal to) the height anywhere else in the interval
ie. f(a) € f(z) for all z in the interval, as shown in figure(2)in the
appendix

Absolute Maximum And Minimum

An absolute maximum of a function f on aset S occurs at z, in S if
f(z) < f(zo) for all z in S.

An absolute minimum of a function f on a set S occurs at zp in S if
f(x) > f(xzo) for all z in S.

Absolute maximum and minimum is also know as Global maximum
and minimum as shown in fig(3) in the appendix

Constraint

A constraint is a relationship that satisfies feasible values for a struc-
tural variable

Functional

A real valued function f whose domain is the set of real function y(x)
is known as a functional (or functional of single independent variables).
Thus the domain definition of a functional is a set of admissible function

Definition

A functional I[y(x)] attains a maximum on a curve Y = yo(z) if the
value of / on any closed curve to y = yy(z) does not exceed I[yo(z)].
This means that AI = Iy(z)] - I[yo(z)] <0, ie. if AT <0 and AJ =
0 ony = yo(z) then a maximum is attained on y = yo(z).

A functional I[y(z)] attains a minimum on a curve y = yo(z) if the
value of I on any close curve to y = yy(z) exceed T [yo(z)] this means
that Al = Ify(z)] - I[yo(z)] > O.i.e. if AT >0 and AT = 0 on y then
a minimum is attained on y = yy(x).




1.5 Necessary Condition For A Function To
Be Maxima And Minima

The necessary condition for a function of two variables f(z,y) to have a
minima or maxima at a point (z, yo) is when

of _of
— = = =0) (1.1)
dr Oy

_ this is called the stationary point. To find the minimum or maximum of a
function we first locate the stationary point, then examine each stationary
point to determine if it is maximum or minimum and to determine if a point
Is maximum or minimum, we may consider the value of the function in the
~neighborhood of the point as well as the value of its first and second partial
derivatives.

1.6 Sufficient Condition For A Function To
Be Maxima And Minima

let Z = f(x,y) be continuous function in first and second partial derivatives
in the neighborhood of point (zy,yp) then if

of _of _,

or Oy
cd sy (12
A0y dz? 9y? ¥

There exists a saddle point, meaning it is a point where function is neither
‘maximum nor minimum. Then there exist a maximum at (zg, yo) if

o f
Fuoy <0 (1.3)
There exist a minimum at (zg, yo) if
Qe F
dzdy )

Note: All these conditions are applicable to one, two or n variables




Example 1.5.1
Consider the function f(z) = 72% — 3z +5
In solving this kind of problem we need to find the first derivative and our
critical point
fi(z) =143 -3

we then have 14z — 3 = 0 and our critical point is now % and f"(z) =14 >0,
which is minimum since %é >0

e . . . 3
Then f(z)) is minimum at point 33

Example 1.5.2

Consider the function f(z) = P —2t+zr+1

solution

fiiz) =3z —4x+1=0
solving 322 — 4z + 1 = 0 we have our critical number to be 1 and %

f"(z) =6z —4

f(1)=6-4=2>0
Fly=2-4=-2<0
J

so f has a relative minimum at 1 and relative maximum at 3

1.7 Constraint

A constraint in the mathematical sense is a limitation usually imposed upon
cither the domain of a function or range of a function. For example, one might
say, find the solution to the equation 22 = 9, subject to z > 0, x 2 0is a
constraint because it limits the answer to a positive number only. Without
that constraint, one would have to include —3 as a solution but since z > 0,
it means = 3 is our only answer.




Exafnple

y=2*+C

Given a constraint, with these we can now get our particular solution. Since
y(1)=T7 it means z = 1 and y = 7 from our constraint

T=1+¢
C=6
y=z°+6

Integral Constraints

These are constraints that are in integral form, isoperimetric problems in
~caleulus of variation are examples of such problems where an integral is to
be optimized, subject to a constraint which is another integral having a
specified value. This name came from the famous problem of Dido of finding
the closed curve of a given perimeter for which the area is a maximum or
minimum for the Euler equation the problem can be stated as

Opt-im.:ézefy(a;) 2/ f(z,y,9)dx
zp




Subject to :
Jo / Gz.y,y')do
T

‘Where J 18 the constraint

Equality Constraints

Minf (2, vy )
Subject to
G($11 -*-::}’.R) =0
TUh.B'T'E[Gl (Xls ) Xu)---Gn(ml: ooy .'1-‘””

The Lagrange function f is constructed as
F(@A) = f(z) - AG(2)

Where 7 = (Z1,...z,) the variable A = [),, + An], Where A, ..y Ay are called

Lagrange multipliers. The extrema points of the f and the Lagrange multi-
bliers satisfy:

Af=0
k
df 20, et 0
d_:i*;_mgu)\m z; —03—' 1,2,...,”
Loy Tp) =0

Lagrange multipliers metho defines the necessary conditions for the co-
strained nonlinear optimization problems.

Inequality Constraints
- The Lagrange multipliers method also covers the case of inequality con-

straints,
: Minf(z,, ..., z,)

Subject to:
: G(:Cla ---a:i:'n,) =0
Hlzy 2,50
In the feasible region H(z,, Sbn) = 0 or H(z;, ) < 0 where H, = 0,

H is said to be active, otherwise H; is inactive. The augmented La,grange
function is now




Subject to:G(zy, ..., z,) = 0

Then we have the lagrangian function to be

f@, A p) = f(z) — AG(z) — puH ()
[Hl(Xl,..‘,X.,l)...H.”_(:zrl,...,3:”,)]
H= (,ul: reey #-u.)

When H; is inactive, we can simply remove the constraint by setting pu;
=0. If Af <0, it points to the descending direction of J and when H;
is active, this. direction points out of the feasible region and towards the
forbidden side, which means AH; > 0. This is not the solution direction. We
can enforce 41; < 0 to keep the secking direction still in the feasible region.
When extended to cover the inequality constraints, the rule for the Lagrange
multipliers method can be generalized as

T

Af(z) - ZAtAGt(m) - ZAHj(ZL') =0

,U..g_.Hg = (i = (1,2,3, ...'TTL)
}J-g,.H—.,:_ == (1, 2, 3 m)
Gz)=0

In summary, for inequality constraints, we add them to the Lagrange function
Just as if they are equality constraints, except that we require that p, <0
and when H; # 0, p; = 0.

1.8 Some Useful Theorems Used In Lagrange
Multipliers
" Theorem

Let f and g have first partial derivatives such that f has extremum at a

point(zg, 7o) on the smooth constraint curve ey =C. H Vg(zo,yo) #0
‘then there is a real number\ such that

V f (2o, _yu} = AVg(z0, 1)

9




Theorem

For a constrained system local maxima and minima (collectively extrema)
- occur at the critical points. Suppose M is the maximum (or minimum) value

of f(z,y), subject to the constraint g(z,y) = c. The Lagrange multiplier A
1s the rate of change of M with respect to C. That is.

3 oM

A=

Theorem

If a function I[y(z)] attains a maximum or minimum on y =yo(z) where the
domain of definition belongs to certain class, then at y = Yo(z) then 61 = 0

Proof

For fixed yo(2) and &y, Iye(z) + ady] = (a), where 1 is a function of @ and
this reaches a maximum or minimum at @ = 0 thus, ¢'(0) = 0 leading to

B‘%I[YU(X) + adyl||0 = 0i.edI =0

If a function Iy(z)] attains a maximum or minimum on the curve Y = yo(x)
with respect to curve y = y(z), such that [y(z) — yo(z)] is small then the
maximum or minimum is said to be strong.

On the other hand, if I[y(z)] attains a maximum or minimum on the curve
Y = yo(x) with respect to curve y = y(z) such that [y(z) — yo(x)] and
[v'(z) — yo(2)] are both small then the maximum or minimum is said to
be weak. ‘

10




Chapter 2
literature Review

This is the historical background of how isoperimetric problems came about
in the early Greeks. Isoperimetry (the study of geometric figures of equal
perimeters) was a topic well embraced by the ancient Greeks. Yet the Greeks
did not have a clear understanding of the relationship between perimeter and
area. Proclus claims that this lack of understanding led to cheating in land
dealings.

Moreover, the theorem that all triangles formed on the same base and always
. between the same two parallel lines are equal in area was considered para-
doxical by the Greeks since the perimeter could be made as large as possible.
In spite of this the Greeks were outstanding and proved that the equilateral
triangle solved the isoperimetric problem for the triangle and that the Square
_solve the isoperimetric problem for the rectangle. The origin of the isoperi-
metric problem should be attributed to the early Greeks because it is not
known who among them was the first to state the problem, state the solution,
or attempt a solution, Some historians claim that Pythagorus (580 BC - 500
BC) knew the maximum principle of the circle. However, Porter claims that
Pythagorus knowledge was no deeper than believing that of all plane figures
the circle is the most beautiful. Porter dismisses this statement. with all
the augment they still have some difficulty completely divorcing pathagorus
statement from the iso-area problem.

Mathematical historians tend to agree that Archimedes (287 BC - 212 BC)

was well aware of the isoperimetric problem and in its solution. However there
" is no agreement as to whether or not he attempted the proof. Zenodorus (200
BC - 140 BC) authored a book entitled ”On Isoperimetric Figures”. This
book was unfortunately lost, but the work has been partially preserved by
Theon (335 AD - 405 AD) and Pappus (290 AD - 350 AD), his preserved
“work includes the following two theorems.

11



Theorem 2.0.1

Among all polygons of equal number of sides and equal perimeters, the reg-
ular polygon encloses the greatest area.

Theorem 2.0.2

- The circle has greater area than any regular polygon of equal perimeter.

"Porter” notes that Zenodorus assumed existence of a solution in his proof
of Theorem 2.0.1 and this gap in his proof was corrected by Weierstrass
-two thousand years later. Historians and mathematicians alike credit Zen-
odorus with the first attempt to prove that the circle solves the isoperimetric
problem, claiming that the proof either contained a flaw or was incomplete.
However, that Zenodorus attempted a proof cannot be validated from look-
ing at his work preserved by Theon or Pappus. Hence, it could just be that
what some are referring to as an incomplete proof is merely the proof of
Theorem 2.0.2. stated above. However, it was believed that it is more likely
that Zenodorus merely stated that the circle solves the isoperimetric problem
in two dimensions and the sphere solves the isoperimetric problem in three
dimensions.

2.1 Euler’s Multiplier Rule and the Isoperi-
metric Problem.

First Euler in 1744 and later Lagrange in 1759, in a different manner demon-
strated that a solution of problem below must satisfy the so-called Euler-
Lagrange equation

Extremize f(y)= fab fl,v,v)
subject to G(Y)= jfg(:r, u,Y) (2.1)
Equation(2.1) must satisfy the Euler’s equation

@ oL, 8L

=y " 5y i

- Solutions of the Euler-Lagrange equation are then called extremals of prob-
lem of (2.1). Euler explains how to handle problems where, in addition to
the boundary conditions, the solution must satisfy a subsidiary condition

12




(constraint). He considered the problem

Extremize f(y)= jub flz,y,9)
Subject to G(Y)= jfg(x,y,y’) 4 1

y(a) = aandy(b) =4 (2.3)
standard assumptions made by Euler and Lagrange that (equation 2.1) must
satisfy the Euler-Lagrange equation in (2.2) was carried over to (equation
~ 2.3). In this case F is arca and G is arc length (equation 2.3) is the standard
isoperimetric problem. Historically, (equation 2.3) has been called a general
isoperimetric problem, and the constraint G(y) = { has been called a general
isoperimetric constraint, even if it may not represent arc length. Euler de-
rived the rule which we call (Euler’s Multiplier Rule)which
state that If y* is a solution of the general isoperimetric problem (equation

2.2), then there exists an associated multiplier A such that y* is an extremal
of the auxiliary problem”

Extremize L(y)= f(Y) + AG(Y)
subject to y(a)= candy(b) = 8 (2.4)

then y* is an extremal of problem (2.3) if there exists an associated multiplier
A so that y* is an extremal of problem (2.4) with this choice of A
then the isoperimetric problem was considered in Queen Dido form

Maximize [ y(z)dx

subject to[* /1 + y'(z)%dz

Euler observed that the semi-circle
Ye(z) =val—a2—a<z<a (2.6)
is an extremal of the Multiplier Rule auxiliary problem
Maximize [* (y(z)dz — /1 + v/(2)?)dz
Subject toy(a) = y(a) =0 (2.7)

(equation 2.7) corresponds to a multiplier choice of A =—a in the Euler
auxiliary problem for (equation 2.5). Notice that for problem (2.7),with f
denoting the obvious quantity, we have

RS e B
fy = landfy = —a ey (2.8)

13




‘Now evaluating these quantities for equation (2.6) we see that

YolX) _ 2

VIHYAR? a i

Hence f, = x and the semi-circle satisfies the Euler-Lagrange equation (2.2)
for problem (2.7).

The name Lagrange was attached to the greatly innovative work of Euler.
According to Goldstine in August 1755 a 19 year old Lagrange wrote Euler a
brief letter to which was attached an appendix containing mathematical de-
tails of a beautiful and revolutionary idea, the notion of variations. This idea
_ could be used to remove Euler’s tedium and need for geometrical insight and
all could be done with analysis using Lagrange’s new notion of variations.
Euler was so impressed that he dropped his own methods, espoused those
of Lagrange, named the subject "the calculus of variations”, and called mul-
tiplier theory Lagrange multiplier theory. Indeed today the Euler auxiliary
functional L(y) given in equation (2.4) is called the Lagrangian

In Queen Dido statement of the isoperimetric problem given by (2.5), it
was observed that the semi-circle given by (2.6) has infinite slope at the
end points = a and z =—aq; so the arc length integral in problem (2.5) is
not defined. Throughout the years, beginning with Euler and including con-
temporary times, authors have swept this undesirable aspect of the problem
under the rug and just ignored it. Weierstrass dealt with the situation by
stating the problem in parametric form. Many authors, for example Elsgolc
consider the Euler-Lagrange equation for the Euler’s auxiliary problem (2.7)
as Euler did, but in order to solve the Euler-Lagrange equation they make a
change of variables that leads to the solution in parametric form, and then
they argue that elimination of the parameter gives the equation for a circle.
Yet still other authors, for example Gelfand and Fomin consider the Euler-
Lagrange equation as Euler did and then simply infer that integration of the
“equation leads to a family of circles.

Definition 2.1.1 (The Euler Class)
By E(-a, a) the Euler class of curves for the isoperimetric problem (2.5), we
mean the collection of y : [—a, a]|— R satisfying the following condition

L. y(=a)] = y(a)
2. y is continuous on [-a, a

3. y is differentiable except possibly on a countable subset of [-a, a]

14




4. the arc length integral L2 V1T +y(@)2da

5. Exists as a proper Riemann integral or

6. The curve y is rectifiable and the arc length integral exists as an
improper Riemann integral-

2.2 A Proof Motivated by Euler.

Theorem 2.2.1

The semi-circle curve Ye(z) given by (2.6) uniquely solves the isoperimetric
problem (2.5), with the arc length integral interpreted as an unproper Rie-
_ mann integral, over E(-a, a), the Euler class of functions given by Definition
(2.1.1)

Proof

‘Consider the objective function in BEuler’s auxiliary problem (2.7) for the
Isoperimetric problem of equation (2.5),

I0) = [ 0@ - o/ T 7R (2.10)

and the semi-circle
Ye(¥) = Va® — a2, for—a< 2 <q (2.11)

For the sake of convenience he considered the integral in J(Y') as an improper
integral, and nothing is lost if it exists as a proper integral. He also considered
when y # y,. is contained in the Euler class and let 7 denote y — yc. Then

¢r = / [Ye +tn — av/1 + (¥, + tn')?)dx (2.12)
—a+te y
for ¢£[0, 1] and e(0, a) Straightforward differentiations give

|dx
a+c vV 1 (1}; o ﬁ?")

—a+€ ?}12
$10)=—a [ AT
a-e  [L+ (y, +tn)?3




- Taylor’s Theorem tells us that
i l I
¢.(1) = ¢(0) + ¢.(0) + §¢)E (0) forsomefz(0,1)

‘now we see that equation from definition (2.1.1) number (4) gives

\a—e¢
#.(0) = / ) () 1
—a+te

and because 7 is continuous ¢.(0)— 0 as e — 0 Also observe that ¢”(0) < 0
and decreases as € decreases. So letting € — 0 now gives

J(Y) < J(ye)

The fourth term in (2.7) must have a limit since the first three do. Now,
restricting our attention to all y in the Euler class which have arc length
. equal to ar (the arc length of the semi-circle) (2.8) tells us that y. uniquely
solves the isoperimetric problem in the Euler class.

Remark

It is important to realize that our sufficiency proof borrowed only the objec-
tive function J of the auxiliary problem (2.7) from Euler’s necessity proof.
Hence, it doesn’t matter whether Euler’'s proof of his rule was rigorous or
not.

2.3 A Proof Motivated by Lagrange
Theorem 2.3.1

The semi-circle curve y.(z) given by Equation(2.6) uniquely solves the iso-
~ area problem
Minimize i

JU¥) = / 1+ ¢/ (z)%dx

—a

‘Subject to




with the arc length integral interpreted as an improper Riemann integral,
over E(-a’ a), the Euler class of functions given by Definition (2.1.1) Hence
- it uniquely solves the isoperimetric problem, with the are length integral ip-
terpreted as an improper Riemann integral, over the Euler class.

‘Proof

Following Lagrange’s 1759 derivation of the Euler-Lagrange €quation we first
consider a class of admissible variations.

S = (?;eE(Ha., a) :/_lz n(x)dz)

Since members of E(-a, a) are continuous the area integral in problem (2.8)
and in (2.9) are viewed as proper Riemann integrals, Ag before, let y, denote
the semi-circle (2.6) and consider any y # y. contained in the Euler class.
Letp=gy - Y. and notice that neeS. As in the Previous proof, define

Pe(t) = /H V1+ (y, + tn)2ds

for t [0, 1] and €€(0, a)
‘Straightforward differentiations witl, respect to t give

(ve +tn')y

a—e
OL(t) = e A
( ) —a+e \/ 1+ (y:- =+ 37}")2

s a—e (nI)Z
S e L
?(0) [HE (1+ (v, + tn')?)2dz

Recalling (2.9) and integration by parts give

o ol e [ naai

a a+e a —a+te

Hence ¢(0) - 0 as ¢ — 0

- Taylor’s theorem tells us that

Pe(1) = $.(0) + 9.(0) + 2¢”(6) for some 0(0,1)

17



Observe that ¢”(f) >0 and increases as € decreases. So letting € — 0 in the
last equation gives

J(yec) < Jy

Since y was an arbitrary member of the Euler class y. uniquely solves the
* iso-area problem, hence the isoperimetric problem in the Euler class.

‘Remark

Lagrange could have made this proof because he was familiar with the form
of Taylor’s theorem that we used, while this hypothesized proof would have
been made 50 years after Euler, it would still have been some 80 years before
Weierstrass. :

In conclusion, firstly is that the isoperimetric problem has been a most
impactful mathematical problem. The isoperimetric problem, perhaps be-
cause it is so easy to state and understand and yet its solution has been so
mathematically challenging has influenced the writings of scholars in many
" diverse areas.Euler built multiplier theory specifically to solve this problem,
~ He worked with the iso-area problem and in a most ingenious manner made
a coordinated transformation writing the curve under consideration in para-
metric form where the independent variable was arc length. When he wrote
the transformed problem the area constraint vanished. Hence he arrived at a
_problem which had no subsidiary constraint and had the form of the simplest
problem in the calculus of variations. He then showed that the circle was an
extremal of this problem by solving the Euler-Lagrange equation associated
with the transformed problem.

2.4 Different Use Of Lagrange Multipliers In
Optimization And Economic

2.4.1 Optimization

Optimization problems which seek to minimize or maximize a real function
play an important role in the real world, it can be classified into unconstrained
optimization problems and constrained optimization problems. Our everyday
life can be formulated as constrained optimization problems, for instance
how to Maximize the profit of an investment is an example of a constrained
-optimization problem.




In unconstrained problems the stationary point gives the necessary condition
to find the extrema point of the objective function f (z1, ..., Tn), the stationary
points are the points where the gradient A f is zero that is each of the Partial
derivative is zero,

All the variables in f(z1, ..., ,) are independent so they can be arbitrarily
set to seek the extreme of f . However when it comes to the constrained
_ optimization problems, the arbitrary of the variables does not exist. The
constrained optimization problems can be formulated into a standard form
as seen below

Minf(zy, ..., Tn)

“Subject to _
G(Zy,...; Tn) =0
H(:l:l':-"!w?l)

Where, G, H are functions. the variables are restricted to the feasible re-
gion which refers to the points satisfying the constraints. Substitution is an
intuitive method to deal with in optimization problems, But these can be
applicable to equality constrained optimization problems and often fails in
most of the nonlinear constrained problems, where it is difficult to get the
explicit expressions for the variables needed to be eliminated in the objective
function.

The Lagrange multiplier method provides an alternative method for the
constrained nonlinear optimization problems, it can help to deal with both
equality and inequality constraints, e.g: given a function f(z,y) subject to
a constraint g(z,y) a new function f can be formed, by applying lagrange
‘multiplier thus we have

flz,y,A) = f(z.y) + ANg(,y))

Here f(z,y,]) is the lagrangian function, f(z,y) is the objective function
and g(z,y) is the constraint, since the constraint is always set to be equal to
zero the product \(g(z,y)) is equal to zero, the addition of the term does not
change the value of the objective function, the critical value zg 9o and A at
which the function is optimized are obtained by taking the partial derivatives
of f with respect to all the three independent variable, setting them equal
to zero and solving simultaneously

fx(x'y)\) i3 Offy(ﬂ»'f’yw\) = 0, f)\(‘l’vy/\) =0
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Examplé

Optimize the function z = 422 4 32y + Gy? subject to the constraint z + y = 56

In solving these we set the constraint equal to zero by subtracting the variable
from the constant

56 —x—y=0
applying the lagrange multiplier we have the lagrangian’s function to be
2 = 4% + 3zy + 6y + \(56 — z — ¥)
taking the partial derivatives and setting them equal to zero and also solve
simultancously,we then have;
2, =8 +3y—A=0 (2.13)
zy=3z+12y—A=0 (2.14)
2=56—-z-y=0 (2.15)
subtracting equation 3.4 from 3.5 to we have
50 —9y =0,z =18y
substituting 2 = 1.8y in equation 3.6 we have
56— 18y —y=20

y =20
since y = 20,substituting y in equation 3.6 and z,y in any of the equation,

we have

x = 36, andA = 348

The method of lagrange multipliers can be extended to constrained optimiza-
tion problems involving functions of more than two variables and more than
one constraint.For instance, to optimize f(z,y,z) subject to the constraint
g(x,y,2), we solve fz = Ao, fy = Agy, f- = Agz . An example of a problem
involving this kind of constrained optimization is below

Example

A jewelry box is to be constructed of material that costs 1 per square inch
for the bottom, 2 per square inch for the sides, and 5 per square inch for the
~ top. If the total volume is to be 96 in®, what dimensions will minimize the
total cost of construction?
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‘ Solution

Let the box be x inches deep y inches long, and z inches wide where z,,
and z are all positive, then the volume of the box is V' = zyz and the total
cost of construction is given by

C = 1lyz + 2(22y + 222) + 5yz = 6yz + 4oy + 422

which are (bottom, side, and top) now we wish to minimize C' = 6yz + 4y + 4z
subject to V = ayz = 96 .The lagrangian’s function is now

6yz + dzy + 4oz + A(zyz)
now we find the partial derivatives of each variables and solve simultaneously
Cy = Aygordy + 42 = A(yz)
Cy = Ayyorbz + 4z = A(z2)
C.Av,0r6y + 4z = A(zy)

we now have three equations below

dy+4z—Ayz=0 (2.16)
6z+4x — Azz =0 (2.17)
6y + 42 — Aay = 0 (2.18)

- Solving each of the first three equations, we have

dytdz _ Gz4dz _ Oytde _ A

yz t -4 £

By multiplying each expression by zyz, we obtain

dzy + dzz = 6yz + dyx
dzy +4zz = Gyz + 42z
6yz + dyx = 6yz + 42z

which can be further simplified bjf common terms on both side of each equa-
tion to get

4zz = 6yz (2.19)
4zy = 6yz (2.20)
dyx = 4zz (2.21)
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By dividing z from equation(3.7),y from the equation(3.8),and « from equa-
_tion(3.9),we obtain :

4z = 6y (2.22)
Az = 62 (2.23)
4y =4z (2.24)

so that y = %x and 2z = %x and y = z, substituting these values into the
constraint equation zyz = 96, we have
S

:L'(~:z:}(§z:) =96

%;ﬁ = 96

2° = 216s0z = 6
and then y = 2 = £(6) = 4
.Thus, the minimal cost occurs when the jewelry box is 6 inches deep with &
square base, 4 inches on a side.

2.4.2 The Power Systeins Economic Operation

The Lagrange multiplier method is also used to solve extreme value problems
In economics.in the cases where the objective function f and the constraints
G have specific meanings, the Lagrange multipliers often has an identifiable
significance.

In economics, if you're maximizing profit subject to a limited resource, A is
the resource’s marginal value, sometimes called shadow price Specifically, the
value of the Lagrange multiplier is the rate at which the optimal value of the
- objective function f changes if their is a change the constraints.

An important application of Lagrange multipliers method in power systens is
the economic dispatch, or \-dispatch problems.In this problem, the objective
function to minimize is the generating cost, and the variables are subjected to
“the power balance constraint. This economic dispatch method is illustrated
in the example below

Example

e Three generators with the following cost functions serve a load of 952Mw
assuming a lossless system, calculate the optimal generation scheduling

Fi vxy + 0.0'325:1:?
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fa2 i 22+ 0.012522

f3: 3+ 0.025022
Where, z; is the output power of the ith generator; f; is the cost per hour
‘of the generator. The cost function fi with respect to a; is generated by
polynomial curve fitting based on the generator operation data, x; has the
unit MW. Since w = £ and the costs to produce 1j has the unit £, we have
[w] = [£] = [£].Hence, the cost f; has the unit £ /hr.
The first step in determining the optimal scheduling of the generators is to
express the problem in mathematical form. Thus the optimization statement
is ;

Minf = fi+ fa + fs = &1+ 0.6252% + 5 + 0.012522 + 25 + 0.02502
Subject to
G=x1+2y+23—952=0

- The corresponding Lagrangian’s function is

f =21+ 0.62527 + x5 + 0.012523 + 75 + 0.02502% — A(2; + a3 + 73 — 952)
Setting V f = 0 yields the following set of linear equations:

0,126 0 0 -1 z ~1
osetone . an ) e ] o feea
0 0 005 -1 3| | -1
1 1 3 A 952

Iy = IIZA/I!U
Ty = 560 Mw

x3 = 280Mw
A= L15/Mwhr

and the constrained cost f is £7616/hr.

This is the generator scheduling that minimizes the hourly cost of produc-
. tion. The value of \ is the incremental break-even cost of praduction. This
gives the company a price cut-off for buying or selling generator: if they
can purchase generator for less than A, then their overall costs will decrease.
Likewise, if generator can be sold for greater than ), their overall costs will
.decrease. Also note that at the optimal scheduling, the value of ), and z;
satisfy

A (£/Mwhr) = 14 0.1252; = 14 0.0252, = 1+ 0.0523 Since A is the in-
cremental cost for the system, this point is also called the point of equal
incremental cost criterion. Any deviation in generator from the equal in-
cremental cost scheduling will result in an increase in the production cost

7.
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Chapter 3
Methodology |

The method of Lagrange multiplier allows us to maximize or minimize func-
tions with specific conditions known as constraints. To find critical point of
a function f(z,y, z) subject to the constraint g(z,y,z) = C we must solve
the following system of simultaneous equations:

VI(@,y,2) = \g(x,y, )
/\g(z:! 'f}: 3) e C
-Remembering that V f and Vg are function, we can write this as a collection
of four equations in the four unknowns z,Y,2, and )\
fo(®,y,2) = Mgy (2, y, 2)
Fy(@,y,2) = Agy (2, v, 2)
fa(,y,2) = Mg, (2,y, 2)
9(z,y,2z) =C
The variable ) is a dummy variable called a Lagrange multiplier”; we only

care about the values of T, Y, and z .Once we have found all the critjcal points,
we substitute them into [ to determine the maxima and minima points. The
critical points where [ is greatest are maxima and the critical points where

- [ is smallest are minima.

3.1  Procedure For Solving Lagrangian Equa-
tion

1. Since we don't actually care what )\ is, we can first solve for A in terms
of z,y, and z to remove A from the equations.
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2. we solving for one variable in terms of the others

3. In case of square root, we must consider both the positive and the
negative square roots.

4. whenever we divide an equation by an expression, we must be sure that
the expression is not 0, it may help to split the problem into two cases,
first solve the equations assuming that a variable is 0, and then solve
the equations assuming that it is not 0.

SIMPLE ILLUSTRATION OF PROCEDURE

Use Lagrange multipliers to find the maximum and minimum value of a
function subjected to given constraints 22 492 = 0 if f(z,y) = 3z + y For
this kind of problem, f(z,y) = 3z + y and g(z,y) = 22 + 2 =0

Let us go through the steps (procedure)

Vf=(31) (3.1)
Vo= (22,2y) (3.2)
(3,1) = A(2z, 2y) (3.3)

we solve the above equation and consider the following system of 3 equations
with 3 unknowns (z,y, A)

2Np =3 (3.4)
- 2y =1 (3.5)
2 +y2=10 (3.6)

Now solving for each variables.from equation (3.4) T = 5= also from equation
(3.5),y = %, Putting the value of z and y in equation (3.6) we have

3 2 Log
ZA) % 2/\) =40
el

Now, we plug A back into our original equation(3.1) and (3.2) = + 3 and
y =+ 1ie. we have (3,1) and (=3,-1).

We can classify them by simply finding their values and subtitue into f(z,y)
.= 3z + y then we have '

1.
Vf(3,1)=9+1=10



Vi(-3,-1)=-9_1= —10

- So the maximum happen at (3,1) and the minimum happen at (=3,-1),
this is an example of an equality constraiut,

3.2 Derivation Of Euler- Lagrange Equation

-Given a function y(z) which extremizes a given functional

1(y) :_/ f@,y,y)da
Subject to the boundary condition

y(:’r’l) = 91;9(2152) = Y2,.

the solutions y(z) of this problem are called the extremals of J (or of f), and
the corresponding values of 7 are the extrema.In deriving the Euler-Lagrange
equation, which provides a necessary condition for y(z) to be an extremal of
I. Suppose y(z) is an extremal, i.e. a particular function which extremizes
I, we consider small variations of the form

Y(@) = y(z) + en(z)

~where ¢ is a small parameter and n(x) is any function satisfying the boundary

conditions 7(z;) = 5(z,) = 0 (so that the variation y(z) satisfies the same
boundary conditions as the extremal y(z). Since y(z) is an extremal the
functional I should be stationary with respect to all such variations, i.e. we
must have

, y) — I
R

for every possible choice of n(z). Let A = I(j) — I(y). Then

g s L2 g T
Al =/ f(z, 7, y’)d:r;—/ f@,y,9)dz :/ f(z:,y-#en,y’«l—s:q’d:v)—/ flx,y,9)dx
x1 x T T

We expand the first integrand as a Taylor series, keeping only the leading
terms:

T3 F "iEg
Al = /xl (f(z,y, y') + Eng—g 4 e-r;’% + 0(?))dx — /,;-1 [z, g,y )dz =
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Now, integratmg the second tepy by parts and applying the boundary con-
ditions on n
OF 4 ap d OF
I =elp—j= 4 . R o (O
Al = efr ]z 4 / Oy~ 1 (O )

Thus the requirement becomes

i T it ) A oF

l = e -] S o R
51—1;%( 5 ) /“ Tx(@y dx(ﬁy’))di 0
and, because this

must hold for every choice of n(z), we deduce the Eyler.
Lagrange equation:

g B
5};*3;(5?)-0 (3.7)

3.3 Eulers Theorem

If a curve y = Y(z) extremizes the function Jly] = L f,y, Y')dz subject
to the condition Kly] = [ Gz, y, Y)dx =1, Y(xo) = g, y(21) =y,

and if y = ¥(x)is not an extremal of the functiona] K, then there exists a
coustant A such that t}e Curve y = y(x)is an extremal of the function

al
%

H = [F(z,y,9) + AG(z,y,y)|de

‘The vita] condition for the solution of thig problem is to satisfy the Euler-
Lagrange €quation (3.19)

3.4 Other Forms Of Euler’s E

quation
- d 9fdz  9f g Of doy
Jaold= . Ofdy S ey
dxz f@v.y) = v da * Ay dx Ay dz
or



but
3)‘ d aj aj "

Oy dT(aJ)+ ay’

on subtracting the second equation from the third equation we have

df Of . 9f  of , af

d_m__(y ay £+?y Y d’r(ay
i[f L Bf d df
dz 83; e By dz dy'’

hence d of of
—[f=y=]-=—=0 3.9
da F-v 6y’] Ox 5.9
which is another form of Euler’s equation
2. we know that _Q;L, is also function z,y,y' say ¢(z,v,y’)

_( 8§bdl 8¢dy4_82gy:_8_¢+% 1+@_H
dz 9y’ Oxdx Oydr Oy dx Oz oz 5y’y

g ,0f +3 af

I 62f ’ ajf rrazf
ay(ay )y’ ay,(ay,}y

=5ty Vaoy Lap

putting the value of %(gyi) in Euler’s equation we have

af 82f ! 8f " a?f e
55 b 8333y" =t ag;a-yf -y ayfz =1 (310)

This is the third form of Eﬁler_’s equation

3.5 Extremal

Any function which satisfies Euler’s Equation is known as Extremal is ob-
tained solving the Euler’s Equation
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Case 1
If f is independent of z i.c. g;[ =0in %[f = y'%] — U = 0 we have

6f]

d ;
d—x[f_ya_’ =0

' Integrating we have f- y’gﬁ; = constant.

Caes 2

when f is independent of Y ie. 31; = 0 putting the value of —jf in Euler’s
equation we have E‘i—(—i) = 0 integrating we have Ei = 0 = constant

Case 3

if f is an independent of Y, le. g;f 0 on substituting the value of % in
the Euler’s equation we have gf = 0 This is the desired solution .

- Case 4
if fis 111dependent of x and y we have that -f = 0-and i)i = 0 or 5%57 —
0and 2L = o
Iputtmg thesc value in Euler’s equation we have
O f
ope

if 2 d 77 # 0 then v = 0 whose solution is y = qz + p
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Chapter 4

Application Of Lagrange
Multiplier To Calculus Of
Variation

Calculus of variation is a field of mathematical analysis that deals with max-
imizing or minimizing functions, which are mapping from a set of functions
to the real number. Functions are often expressed as definite integrals in-
volving functions and their derivatives. The interest is in extremal function
that makes the function attain a maximum or minimum value or stationary
point when the rate of change of the function is zero. Calculus of variations
_ primarily deals with finding maximum and minimum values of a definite in-
tegral involving a certain functional.

The calculus of variations originated with attempts to solve Queen Dido’s
problem, known to mathematicians as the Isoperimetric Problem to deter-
.mine the shape of that closed plane curve of fixed length that encloses the
maximum possible area of that plane. In ordinary functions the values of the
independent variables are numbers. Whereas with functionals, the values
of the independent variables are functions. Thus variation problems involve
determination of maximum or minimum or stationary values of a functional.
Consider these general functional

Iy(z)) = / G (4.1)

A function y = y, which extremizes the equation above and satisfies the
boundary conditions y(z;) = v, Y(z2) = y2 and is known as an extremal.
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4.1 Standard Variational Problems(shortest
distance) '

Example 4.1

Find the shortest smooth plane curve Joining two distinet points in the plane

Solution

Assume that the two distinct points P, (z1,71) and Py(23,95) lie in the Y-
- Plane. If y = f(z) is the equation of any plane curve ¢ in zy-Plane and
passing through the points P; and P,, then the length L of curve ¢ is given

by e
@)= [ vy

The variational problem is to find the plane curve whose length is shortest
1.e., to determine the function y(2) whick minimizes the functional Lly(z)].
The condition for extrema is the Euler's cquation (3.19)

(')f_ d of
: 9y  dz oy
o ' g U ox - gy
Here f = vV1+9y2 so oy = 2?/—1%&”—2

Then
o oo R
dr’ /1 + y72 Vit+y2'

where k is a constant o
y! P k .f'l f" yi'

0

Squaring y? = k2(1 4 42)
fey = Iﬁ—g = M ,and integrating y = mz + ¢, where ¢ is the constant of

integration. Thus the straight line joining the two points P and P, is the
curve with the shortest length (distance).

Example 4.2

find the stationary value of
Sl 2
I = == )"+ Zyxz — 4%ds
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‘where A(0,0), and B (5, %) are the zy-plane,

Solution
‘Using Euler’s equation
Oy dz oy

7] 0
I=y?+2yz -9, 5% =0 — Zyan.d—a;f! =2y

2z — 2y — i(-‘zy’) =0
dx

d?y
2x — Qy b 2@ = D
d*y
22 +y==x

Our auxiliary equation becomes

m=v—-.-1
mi= L1

y. = Acosx + Bsinx

Yp=EX+F
¥Yi=FE
Yp =0

going back to our former equation,we have

O+EX+F=x
when F = 0, E=1
Up =&
general solution is now
: Y=Y+ Yp

y=2x+ Acosz + Bsinz




where C and D are arbitrary constant.
However, in order that this curve passes through the two end-point A(0,0), B(3,%)
~we have that At (0,0) =0+ A +0=0ie A=0
At (5, 3)B=0
d=8B=0

consequently the function which makes stationary is
y=2z

The stationary value of I,say by inserting the value of y into the integral and
then integrating gives

(ST

I=/ (1+22% — 2%)dz
Q

Example 4.3

Consider the functional

/ v +J YT day(0) =0,y(2) = 1

The integrand does not contain y.s0 we use the ideal in Case 2 in which the
Eulers equation is of the form Fy = C, where C is a constant

bk
1!
Y w1

,yf2(1 LB 62‘.1?2) = C2$2
Since C can take on either a positive or a negative value, we obtain the
derivative from the above,

so that

e szz
- (1=C?)

33




; Cx
T
Integrating the above gives us
i / Cz
Y v1-—C?%%?
1
Y= 5V1—C2$2+D

or equivalent to

et L
The solution is a circle centered on the y-axis,From the boundary conditions
~at y(2) = 1 we have

D?*-2D+5= 6‘1_“
Aty(l)=0

1
2 —
Ditl=—

we now have two equations,Solving the two equations simultaneously,we have

C=—,andD =2

i
o

Thus, the final solution is

Example 4.4

~ Find the stationary value of
. 44 ay ., Lo S T
= f Vet 3m s v uhered(D, OandB(s, 5)

‘Solution
The functional
f(2,9,9") = ¥* + 2yz — ¢/

Using Euler’s equation
d4,0f o
ax "oy’ Oy
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' therefore

d
d—£(2y’)—-23:+2y=0
29”—21,+2y=0
V' -2 +y=0
m2+1=0
m= =43

since m = + j the complimentary solution is given as

Ye = Acosz + Bsing

- and the particular solutioy is

Yp=FEx+f
y=E
¥

So the general solution becomes
0+Fz+ f=q
E=1F=0
W=z
Y=Y +y
Y= Acosz + Bsinzg + g
~ from our boundary condition,we were given

aty =0, and x = 0 we have, C
the general solution is Y = x hen

(0, 0) and (%:5
=0andaty =12 and x =

ZsoD =0 So
ce the equation becomes




2
m T
A i
51+ 33

4.2 Isoperimetric Problems

In a simple seance isoperimetric problems involves the determination of the
~ shape of a closed curve of the given perimeter enclosing maximum area (the
so-called Dido's problem). The determination of the shape of a closed curve
of the given perimeter enclosed maximum area is an example of isoperimetric
problem. The solution to this kind of problems is always a circle. Isoperi-
‘metric (iso for same, per metric for perimeter) problems deal with finding
the closed curve of given length with an enclose maximum area subject to
the constraint (condition) in which the length of the curve is fixed.
The simplest isoperimetric problem consists of finding a function f(z) which
extremizes the functional as shown

L2
g / @, 9,9)ds
T

subject to the constraint (condition)

J=f ug(:r..’f‘,y’)dx

Assuming we are given prescribed values that satisfies the prescribed end
conditions y(z1) = y1 and y(x2) = y, ,to solve this problem, we use the
-method of Lagrange multiplier,we now have a new form of function called
the lagrangian.

H(z,y.9) = f(z,9,9) + Ag(z, 9, 9/)
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Where ) is an arbitrary constant known as the Lagrange multiplier. Now
the problem is to find the extremal of the new functional.

5
/ H(z,y,y)dz

subject to no constraints (except the boundary conditions). Then the modi-
fied Eulers equation is given by

Examples 4.4

1. Find the curve C having length L which encloses a maximum area. The
area bounded by a simple closed curve C is given by 2 § xdy + ydz

Solution

Our curve has a length

ds® = dz? + dy*

ds® = dz’[1 + (;ﬁ)r“]

i

ds = \/(1 4 y?)dx

= / V{1 +y?)dz

the same as the length, which is L we now have to

maximize area +
3 jt{ xdy + ydx
subject to length

/\/(1+y’2)dm=z,
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1ed

range multiplier we reduce the problem fto an unconstrair

Applying 1ag
one,so that we now have
Max 1 :
: j'g xdy + ydo + A] JQ +y?)da
where

il_—
e Ty - ¥+ A1 +y’2)’l-'

This is were the Euler's Equation comes in,we now have oul Euler’s

Equation to be
aoM M g
dz " 0V ady =
oM _z < P _10M !
oy i 2+)\y(l+y & dy R
d oM, 1 g 1
da;(ay’ #2+Adﬁ,[{y[1+y ) z]
d oM, OM 1 d 5
S )\._---" -"?‘ 2 — =
d ay’) Y 2+ dwly(l+y) ]+2 0
Ai[’(u-ﬁ?) 1) = -1
d:.r;y Y 2

Bl

b b g k)(1+ y"?)

MWyt =(-—z+ k?+ (1+ y?)
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(k—2)* + (k — 2)*y"

202 = (k- 2)%] = (k — 2)°

2 (k_w)z
A —(k—x)?

E’}E)z ol z)?
@) = N=(h—ap

dy o (k~u)

dr = = (k-a)

4 k=%
o SR e, SRR
g / e

now integrating using substitution method we have that

e |
=-2u-+C
Wgetg

y=VX—-(k—2)3+C
22— (k—x)?
¥ =CP+@-kr=X

The maximum area of the isoperimetric problem is a circle center at
(k, c)

_ Find the solid of volume by the revolution of a given surface area such
that the curve passes through the origin and it rotate about the x-
axis,given a functional V = [ my® subject to 5 = Jo 2my+/(L + y?)dz
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solution

Here we have to extremize V with a given functional S, V = 7Y? and

S = 2my+/(1 +¥?) then
' f=my? +2my/(1+97)
for maximizing V,f must satisfy the Euler’s equation. But v does not
contain z so we use the other form of Euler’s equation

f—yaJ;:C

so that :
' 1 2myA2y _C

my? + A2my+/ (1 + Y2 -y c—F—n
2/(1+y?)

st
my? +2rY A/ (1 + g%y — M— =
- (1 +y%)

2mYA

mf 4+ ———==C
TR

As the curve passes through the origin (0,0) C =0

3 DeyA- 0

Tyt
V+y?)

2\

Y+ ——
(1+y?)

then




dl 4A2___.a'2
dx

yd? /dw+(’

\/ o
e e

Vil —-y2=—-z-C

3. Maximize

J(y)zf_a ydz

a

subject to the constraints y(-a) = y(a) = 0 and

K[y)z] V1+y2de =1

Solution

Applying largrange multiplier and using Eulers Rule,since J =y, K =
v/ 1+ y? we have J(Y) + AK(y)

H=F+)G=y++/1+y2
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HG) = [ v+ VIV

Make H(y) stationary and hence solve using Euler’s equation

oH d o0H
5 onw
d AY 0

1 —afe————— =
da‘( F1+yf2)

A s
dx 1 yﬂ a5
integrating both side we have
A !
y =z4+0C

A2Y"?2 = (2 + C)* (1 +97)
22y = (z° + 22C + ) (1497
22 +22C + ¢ + zy? + 22Cy' + Chy?
(z+C)+(z+ C)%y”
Ay — (z+C)Py? = (a+ )y

Y2\ — (X +¢)?) = (@+C)’
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o (x+C)
Y /R-G+op

Now by integrating both side we have

y=—(N~(+C))+C

¥V =CP=3-(z+0)

The extrema of J(y) is a circle,centred at (¢, ¢1) and radius r = AZ or
H =y + /1 + y">.However, note that g‘(—\‘r = 0 which is the first integral
H —y'L, = constant

The equation above can be written as

(11?+C1)2+ (} —02)2 2 Az

This must satisfy the conditions that y(a) = 0 = y(a) and K(y) = L
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Chapter 5

Conclusion And
Recommendation

Conclusion

The calculus of variations is concerned with finding the maxima and minima
of certain functions,functional minimization problems known as variational
problems which appear in various fields of science. It is also applicable to
functions subject to more than one constraint.

‘In isoperimetric problems the idea behind lagrange multiplier method is to re-

duce constrained optimization problems to unconstrained optimization prob-
lems and solved using Euler’s equation. Generally, Lagrange multiplier is very
useful in the area where we are to get the exterma of a function (maximum
and minimum) under a given condition known as constraint.
With the use of Lagrange multiplier in calculus of variation, it has made
it easier in the field to arrive at the maxima and minima (extrema) of a
function, in isoperimetric problems even when the constraint is an integral
constraint.Lagrange multiplier has played a vital role in many other fields of
science, social science and engineering,therefore Lagrange multiplier is very
fast and accurate.

Recommendation

The method of Lagrange multiplier is very accurate and efficient for solving
_constraint problems in various fields, problems with two or more constraint.
Differential transformation (numerical method) can also be used to solve
problems in calculus of variation (isoperimetric problems). Therefore a soft-
ware should be developed for Lagrange with the interest that it will be free
from human error or error computation to make it casier and more time
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friendly in case of two or more constraint.




P A
ok L.o-:_ai Maxsrnum -?L

Lﬁcal Mlmmum

D
X

(s

Figuras.1: 1




f

Figure

47,

9.2; 2



B

i j. Local Mﬂx;mpm
B B e Ma;‘(imum L I:

Figur'5.3: 3

Global

Minimum



