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ABSTRACT

This investigation is to determine the physiological basis of water deficit stress in pearl millet,
(Pennisetum glaucum) and maize (Zea mays). Crops were grouped into two categories, each
representing a treatment and replicated 3 times, Category (1) which serve as the control
received 100ml of water every 2 days throughout the experimental period. Category (2)
received 100ml of water every 2 days for 6 weeks before subjecting them to simulated drought.
Physiological parameters evaluated after the treatment include biomass, relative water content
of leaf, leaf area, chlorophyll level and leaf epidermal quantification. Analysis of variance was
also found to be significant for genotypes, treatments and their interactions at 0.05% level. The
results showed drought caused decrease in biomass, chlorophyll, relative water content (RWCQC),
leaf area, and adaxial epidermal surface of Zea mays exposed to drought, while in Pennisetum
glaucum, showed a significant increase in root/shoot ratio, biomass, and abaxial epidermal
surface under drought condition. Therefore, the comparative analysis of these two genotypes
under well-watered and water deficit stress condition revealed that P. glaucum was superior

over Z. mays indicating that such relationships can be positively attributed to drought tolerance.



CHAPTER ONE
1.0 INTRODUCTION AND LITERTURE REVIEW
In coming decades, the combination of tﬁ;é rising world i)opu]ation and climate change will
place new demands on agriculture globally. The emission of carbon iv oxide (CO») and other
greenhouse gases will result in the warming of the climate across the world, and this will have
significant negative effect on agricultural productivity due to increase in incidence of extreme

weather events, including heat waves and drought. (Geber e al., 1990)

Drought stress is one of the main causes for crop yield reduction in the majority of agricultural
regions of the world. In many researches, drought tolerance in plants has been studied in

relation to regulatory mechanism of osmotic stress (Ashraf and Foolad, 2007)

Plant would respond to water stress by dramatically complex mechanisms from genetic
molecular express, biochemical metabolism, through individual plant physiological processes
to ecosystem levels which may mainly include four (4) aspect; (1) drought escape via
completing plant life cycle before severe water deficit ¢.g. earlier flowering in annual species
before the onset of severe drought (Geber er al., 1990). (2) Drought avoidance via enhancing
capacity of getting water, e.g. developing root systems or conserving it such as reduction of
stomata and leaf area/canopy cover. (Schulze, 1986; Jackson e al., 2000) (3) Drought tolerance
mainly via improving osmotic adjustment ability and increasing cell wall elasticity to maintain
tissue integrity (Morgan, 1984) (4) drought resistance via altering metabolic path for life
survive under severe stress e.g. increased antioxidant metabolism (Bartolie er al., 1999:

Penuelas er al., 2004)

Drought, as an abiotic stress, is multidimensional in nature, and it affects plants at various
levels of their organization. Under prolonged drought, many plants will dehydrate and die.

Various plant physiological processes are altered by plant water stress and are likely to affect
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growth. For example, photosynthesis is reduced and rate of translocation is declined. Greenway
et al., (1969) suggested that disturbance in mineral nutrition is partly responsible for reduced
growth in plants experiencing water stress. Water stress in plants reduces the plant-cell’s water
potential and turgor, which elevate the solutes’ concentrations in the cytosol and extracellular
matrices. As a result, cell enlargement decreases leading to growth inhibition and reproductive
failure. This is followed by accumulation (')f Abscisic acid (ABA) and compatible osmolytes
like proline, which causes wilting (Lisar e al., 2012). Drought not only affects plant water
relations through the reduction of water content, turgor and total water, it also affects stomatal
closure, limits gasecous exchange, reduces transpiration and arrests carbon assimilation
(photosynthesis) rates. Many studies on plant responses to water stress were carried out by
investigators concerned with agricultural production, environment and resources, macroscopic
physics of soils, plant and atmospheric water (Denmead and Shaw, 1960; Slatyer, 1967;

Loomis, et al., 1971; Fischer, 1973: Hsiao, 1973).

Drought in many cases actually causes specific changes similar to changes induced by nutrient
deficiencies. For example, free amino acids and sugars accumulate during water stress as in
potassium deficiency and ribonuclease increases when either water or potassium is deficient
(Gates and Bonner, 1959). However,, it is essential to examine water stress effects within the
reference framework of stress severity and time courses, only then can we hope to unravel the
causal relations and the sequence of complex events which constitute plant responses to water
stress. Plants adapt themselves to drought conditions by various physiological, biochemical,
anatomical, and morphological changes, including transitions in gene expression. The
physiology plants’ response to drought at the whole plant level is highly complex and involves
deleterious and/or adaptive changes. This complexity is due to some factors such as plant
species and variety, the dynamics, duration and intensity of soil water depletion, changes in

water demand from the atmosphere, environmental conditions, as well as plant growth and the
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phonological state in which water deficit is developed. Plants’ strategies to cope with drought
normally involve a mixture of stress avoidance and tolerance strategies. Early responses of
plants to drought stress usually help the plant to survive for some time. The acclimation of the
plant to drought is indicated by the accumulation of certain new metabolites associated with
the structural capabilities to improve plant functioning under drought stress. The main aspect
of plant responses to water involve the maintenance of homeostasis (ionic balance and osmotic
adjustment), counter action to resulted damages and their quick repair such as scavenging of
ROS and decrease oxidative stress and the regulation of recovery of growth. Under limited
water conditions, plants respond differently and show a wide range of drought tolerance

mechanism both in terms of morphology and physiology.

Drought stress can trigger overproduction of reactive oxygen species (ROS) in plants
eventually resulting in oxidative stress (Reddy er al., 2004). Drought stress, like other abiotic
stresses, can also lead to oxidative stress through the increase in reactive oxygen species (ROS)
such as superoxide (O;), hydrogen peroxide (H202) and hydroxyl radicals (HO) which are
highly reactive and may cause cellular damge through oxidation of lipids, proteins and nucleic
acids (Apel and Hirt, 2004; Mudgal er al., 2010; Nojavan and Khorshidi, 2006). To able to
endure oxidative damage under conditions which favours increased oxidative stress such as
drought, plants must possess efficient antioxidant system. Plant cells have evolved a
(glutathione, ascorbate and carotenoids) as well as ROS- scavenging enzymes such as
superoxide dismutase (SOD), catalase (CAT), ascorbate proxidase (APX), guaiacol peroxidase
(GPX) and glutathione reductase (GR) (Apel and Hirt, 2004; Bhardwaj er al., 2007). Growth
and development of plants is reduced due to oxidative stress (Azevedo ef al.. 1998; Noctor and

Foyer; 1998; Zhu et al., 1999). B



The growth and development of plants is directly regulated by plants hormones (Shakirova et
al., 2003). Plant hormones influence the plants in mﬁltifarious ways affecting a number of
physiological or biochemical processes in plants subjected to biotic and abiotic stresses
(Hildmann et al., 1992; McConn et al., 1997, Reymond and Farmer, 1998). The stimuli in
response to plant hormone are complex phenomena. These processes in7volve a signalling
system that extends across the organs and organelles and also within an individual cel] (Tiryaki,
2004). This integrated networking system performs activities across different organs of plant
by detecting and transmitting signals in their own specific way (Klumpp and Krieglstein, 2002).
There are number of plant hormones such as Indo acetic acid (AA), gibberellin (GA)
cytokinnins (CK), abscisic acid (ABA), ethylene (ACC) that are involved in signalling system.
Apart from these, brassindosteroids (BRS):' jasmonic acid ‘(JA) and salicylic acid (SA) are also
potential molecules that are involved in signal transduction (Aberg, 1981; Raskin, 1992, Gunes
et al., 2006). These hormones activate a range of signal transduction pathways (Gunes et al.,
2006)

Water deficit is one of the major abiotic factor limiting crop productivity in semi-arid tropics
and climate change is likely to make drought stresses even more severe in the future, under

drought, the leaf gas exchange is reduced and this leads to lower biomass accumulation and
grain yield. Previous work in several crops shows genetic differences in how leaf-gas exchange
responds to water stress, with certain genot‘ypes being capable of sustaining plant transpiration
until the soil becomes fairly dry whereas others react with a decline in transpiration when the
soil is relatively wet, this has been documented in maize (Ray and Sinclai, 1997) and Soya
bean (Hufstetler ef al, 2007)

Stomata are portals for gas exchange between the leaf mesophyll cells and the environment,
they occupy between 0.5% and 5% of the leaves epidermal and are most abundant at the bottom

or abaxial surface. Amphistomatous leaves such as leaves have stomata on both sides. T he



pattern of the eoidermal cells and abaxial/adaxial polarity of the maize leaf is established in a
meristem and is subsequently maintained throughout leaf development (Juarez ef al., (2010).
The development of epidermal cell structure and stomatal density on the upper and lower

surface of maize leaves has effect on photosynthesis on each surface.



1.1 OBJECTIVES
The over-all objective of the present study is as follows;
* To compare the responses of maize and pearl millet to water deficit condition.
* To study the physiological responses of pearl millet as an alternative crop to maize for
limited water conditions.
* To establish the extent to which different regulatory responses vary between pearl

millet and maize

1.2 EXPERIMENTAL PLANTS

1.2.1 Maize (Zea mays L)

Maize, (Zea mays) belong to the family Poaceae, the centre of origin of maize is said to be
from the Mesoamerican region, Mexico highland. Maize can grow in wide range of
environment, showing high diversity of morphological and physiological traits. Maize is the
3" most important food crop worldwide (Frova et al., 1999) It is used in many way than any
other cereals therefore it is considered as a multipurposé crop and has been put to a wider range
of uses such as for human food, poultry feed, and for hundreds of industrial purposes.
Typically, it is grown in areas where the annual mean temperature is greater than 18°c.
Worldwide production of maize is 785 million tons with the largest producer, the Unites states
producing 42%, Africa produces 6.5% and the largest African producer is Nigeria with nearly
8 million tons followed by South Africa. Maize is more sensitive to drought. It is exposed o
more hazards and it is a higher risk crop in general (Misovic, 1985). Ribaut er al, (1997)
reported that maize susceptible to drought at flowering stage than any other crop while
Mangombe et al, (1996) found that varieties of maize exposed to unpredictable drought stress
during the growing season produce low q;ality yield. Thé development of maize genotypes

with high and stable yields under drought is important since access to drought adapted



genotypes maybe the only alternative to many small scale farmers, consequently, improved
tolerance to drought is an important breeding objective of (IITA, 2004). A characteristics of
maize under environmental stress is an inérease in the anthesis-silking interval (Bolanos and

Edmemedes, 1993).

About fifty (50) varieties exist and consist of different colours, textures, grain shape and sizes.
White, yellow and red are the most common types. The white and yellow varieties are preferred

by most people depending on the region.

1.2.2 Taxonomic Classification of Maize

Kingdom Plantae

Family Poaceae
Subfamily Panicoideae
Order Poales

Tribe Andropogoneae
Genus Zea

Specie Z. mays

Maize is a short day plant, with 12.5hrs/day as suggested. Photoperiods greater than this may
increase the total number of leaves produceéd prior to initiation of tasselling, and may increase

the time taken from emergence to tassel initiation (Birch, 1997).

Maize is well adapted to a wide range of soil with a pH within 5.0 to 8.0, maize does not thrive
well in acidic soil and it is moderately sensitive to salinity, which reduces the uptake of nutrient
and reduces total dry matter production but low soil water is more of a problem to maize. It is
important to plant maize seeds at an even depth of 2 to 5 cm into firm, moist soil to ensure

good seed-to-soil contact for moisture uptake and subsequent germination.



1.2.3  Pearl Millet (Pennisetum glaucum)

Pearl millet (Pennisetum glaucum L) is a hardy cereal crop belonging to the family Poaceae,
grown mostly in marginal environments in the arid and semi-arid tropical regions of Asia and
Africa (FAO, 2007) There are other different varieties of millet which include Proso millet
Panicum miliaceum, Kodo millet Paspalum scrobiculatumh, Finger millet Eleusine coracana,

Foxtail millet, Setaria italic, Little millet Panicum sumatrense.

It is grown primarily for grain production but is also valued for its fodder, the importance of
which has been rising in the recent years. It is known as ‘yadi’ in Marghi language of north-
castern Nigeria making it the most important and probably having the greatest potential among
the millet varieties, it is robust, quick growing cereal crop with large stems and leaves. It is a
staple food for millions of people and the 6" most important cereal annually cultivated as rain-
fed crop (FAO, 2007). The crop is well adapted to some extent to growing areas characterized
by drought, low fertility and high temperatu;‘es (Izge, 2006). Because of its tolerance to difficult
growing conditions, it can be grown in where other cereals such as maize or wheat would not
survive. India is the largest producer, with 9-10 million ha in area and 7-8million tons of
growing production. In Africa, the largest pear] millet growing countries are Senegal, Mali,
Burkina Faso, Niger, Nigeria and Sudan. Pearl millet is sensitive to photoperiodism as reported
by Clerget e al., (2004) which is a way that has evolved to trigger an escape mechanism, since
it appears that the time of flowering is closely related to the end of the raining season. In other
words, pearl millet flowers on time to ensure that it can complete its maturation cycle with the
remaining soil moisture. During the vegetative growth, root growth is very profuse, with the
ability to match it’s rooting to water availability in a very plastic manner, leading to a highly
varying root growth to shoot growth ratio, depending on the intensity of water limitation

(Squire et al., 1987). Being a Cy plant, pearl millet has a high transpiration efficiency which is



a major strategy to maximize carbon ﬁxatibn as long as water is available, therefore, stomata
movement adapt in such a way that the transpiration rate is kept as high as possible (Squire,
1979). Pearl millet breeding in Nigeria has concentrated on the development of open pollinated
varieties. Pearl millet is an excellent forage crop because its low hdrocyanic content, it is more
digestible when fed green to animals rather than chaffed straw (Chopra, 2001). It is also used
in making popular fried cake known as ‘masa’ likewise consumed as a beverage called *fura’
in Hausa language. The grain fodder is rich in protein, calcium, phosphorous and other minerals

with oxalyic acids in safe limit.

1.2.4  Taxonomic Classification of Pearl millet
Kingdom Plantae

Order Poales

Family Poaceae

Subfamily Panicoideae

Genus Pennisetum

Species P. glaucum



CHAPTER TWO

2.0  MATERIALS AND METHOD
2.1 METHOD
Seeds of Zea mays and Pennisetun glaucum were purchased from International Institute of
Tropical Agriculture, Ibadan and Plateau Agricultural Development Program respectively in a
single batch enough for the study, both genotypes were sown in polythene bags of equal
diameter containing sandy-loamy soil (1.5kg) to achieve three (3) seeds per bag in the screen
house of Federal University Oye-EKkiti. The average temperature for Ekiti State at this time was
28°C high and 24°C low. After germination, the seedlings were thinned out to one (1) seedling
per nursery bag of equal height (10cm) and were arranged in a randomised block design.
Seedlings were watered and allowed to grow for two (2) weeks. Plants were grouped into two
(2) categories, each representing a treatment and replicated three (3) times. Category one (1)
serves as the control and received 100ml of water every two (2) days throughout the
experimental period, while Category two (2) received 100ml of water every two (2) days for
six (6) weeks before subjecting them to ten (10) days of stimulated drought. The experiment
lasted for twelve (12) weeks to vegetative state, and physiological parameters were taken.
The plants were harvested from the screen house and the following parameters were measured:

* Biomass determination

* Leaf area measurement

® Chlorophyll quantification

* Relative water content of the leaves

* Leaf epidermal analysis

2.2 BIOMASS DETERMINATION
Plants were uprooted carefully and washed thoroughly in a running tap water to remove soil
particles. After rinsing with distilled water, they were placed in labelled paper bags and oven

10



dried for 72hrs. The dried samples were weighed using a digital top loading weighing balance
(Mettler AE 100) to determine the dry weight. Plants were also partitioned into root and shoot

and their dry weight determined to evaluate root/shoot ratio (Guo et al., 2010)

2.3 LEAF AREA

The leaf area was determined by comparing the weight of leaf traces with a standard paper of
known weight described by (Eze, 1965)

Leaf area = specimen weight x standard area

Standard area weight

2.4 CHLOROPHYLL QUANTIFICATION

The extraction and estimation of chlorophyll content was done according to the method of
Maclachlam and Zalik (1963). 3.0g of fresh leaves from the two treatments was grinded
differently with mortar and pestle with little quantity of Sodium Potassium trioxocarbonate
IV (NaxCO3) to keep the chlorophyll structlwe. Extraction was done with 25ml of 80% acetone
(20% distil water + 100 % acetone) and filtered through filter paper. I iltrates were centrifuged
at 15000r/min for 20 minutes and the supernatant was used for spectrophotometer readings at
645nm and 663nm wavelength.

C.=(12.3D663 — 0.86D645) V

dx 1000 x W

Cpr =(19.3D645 —-3.6D663) V

dx 1000 x W

Where
C = concentration in mg/g fresh weight
a = chlorophyll a

b = chlorophyll b

11



D = optical density at wavelength indicated

V= volume of extract in ml

d = length of light path in cm (breadth of the transparent part of the spectrophotometer cuvette)
W = fresh weight of leaves in grams

The total chlorophyll content = value of chlorophyll a + chlorophyll b

2.5 RELATIVE WATER CONTENT OF THE LEAVES

Weight of fresh leaves were taken and soaked in water for turbidity weight for 24 hours and
thereafter oven dried. Dried weight was measured with the weighing balance; the relative water
content was calculated as follows according to the method of Turner (1981):

Fresh weight — dry weight 100

X

Turbidity weight — dry weight 1

2.6 LEAF EPIDERMAL ANALYSIS

Fresh samples of the two groups of plants were collected and taken to the laboratory. The
adaxial and abaxial layer were peeled separately and place in bleach inside Petri dishes to
allow full discoloration and transferred to another Petri dish containing distil water then
placed in water to avoid drying out. Thcse. layers was then placed on a glass slide one to two
drops of alcohol was added to remove excess water, stained with safrannin, one to two drops
of glycerol was added for clearer view, cover with a cover slip and view under a light
microscope. Check for the epidermal cells and stomata number, the stomata index was
calculated as:

S 100 S = stomata number

% e

S+E il

_ = Epidermal cell number

12



CHAPTER THREE
RESULTS
3.1  GROWTH PARAMETERS
3.1.1 Dry Weight and Root/Shoot Weight Ratio
Drought stress significantly reduced the control whole plant dry weight of Z mays and
increased the treated condition of P. glaucum. The control condition in maize had a mean dry

weight of 25.5+1.2¢g which was significantly higher than 6.86= 0.22g of the treated drought
condition. For millet it was however observed in P.glacum that the treat drought condition was

9.56+1.23g which is significantly (P > 0.05) higher with 5.5+0.34g of the control.

u Control m Treated

Biomass (g)
— (S0 ]
n <

p—
(=]

Maize Millet

Treatment

Figure 1: Total dry weight of Z mays and P. glaucum affected by simulated drought

application. Data are means, + SE of three (3) replicates.
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Figure 2 showed the effect of drought on root/shoot ratio on Z. mays and P. glaucum. It was
observed in this study that the drought treatment favoured root development in both genotypes.
For Z. mays, the treated mean value of 0.117+ 0.03g was significantly (P < 0.05) higher than

the control 0.0633 + 0.02g, while for P.glaucum 0.113= 0.01g significantly (P < 0.05) higher

than the control 0.26+ 0.2g respectively.

 Control = Treated

0.25

0.2

0.15

Root Shoot Ratio

0.1

0.05

0
Maize Millet
Treatment

Figure 2: Root/Shoot ratio of Z mays and P. glaucum affected by simulated drought

application. Data are Means + SE of three (3) replicates
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3.1.2 Total Chlorophyll Content

Figure 3 showed the effect of drought on the chlorophyll content of Z. mays and P. glaucum.
In control plant for Z. mays the control mean value 0.34 = 0.13g was significantly (P < 0.5)
higher than the treated mean value of 0.11+ 0.03g for P. glaucum there was no recorded

significant difference.

@ Control = Treated

0.9

0.8

0.7

=
=N

=
h

0.4

Total chlorophyl ( mg/g f.wt)

_
=
w

0.2

0.1

Maize Millet
Treatments

Figure 3: Total chlorophyll content of Z. mays and P. glaucum affected by simulated drought

application. Data are means + SE of three (3) replicates
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3.1.3 Relative Water Content

Figure 4 showed the effect of drought on the relative water content in Z. mays and P. glaucum.
The result indicated that drought caused a significant (P < 0.05) increase in the RWC of Z

mays as compare to the P. glaucum where no significant difference was recorded.

m Control = Treated

80

70

60

Relative Water Content (%)
=9
=

20

10

Maize Millet

Treatment

Figure 4: Relative water content of Z. mays and P. glaucum affected by simulated drought

application. Data are means + SE of three (3) replicates
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3.1.4 Leaf Area

Drought stress led to a significant reduction in leaf area of Z mays and P. glaucum. Z. mays
genotype under well-watered. control had increased leaf area with mean value of 53.3+
16.1cm* while the treated had mean value of 36.0+ 6.45cm?®. While P, glaucum exposed to

drought had a significant increase compared to the control.

® Control m Treated

80

70

60

Leaf area (cm2)
. h
= &S

e
=

20

10

Maize Millet
Treatment

Figure 5: Leaf area of Z mays and P. glaucum affected by simulated drought application. Data

are means + SE of three (3) replicates
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3.1.5 Leaf Epidermal

Figure 6. under well-watered control condition the mean stomata index for Zea mays is 46.15%
is significantly (P < 0.05) higher than the treated drought condition 31.22% respectively.
However, P. glaucum for the treated was significantly higher (P < 0.05) than the control

38.87%, 44.34% respectively.

® Control m Treated

Adaxial
o
n

h

Maize Millet

Figure 6: Comparative column chart of adaxial stomata index % of maize and millet genotype

L4
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Figure 7. under well-watered control condition the mean stomata index for Zea mays is 30.55%
is significantly (P < 0.05) lower than the treated drought condition 42.32% respectively.
However, P. glaucum for the treated was significantly higher (P < 0.05) than the control

37.41%, 29.3% respectively

E Control ®m Treated

30

(o)
h

Abaxial

20

Maize Millet

Figure 7: Comparative column chart of abaxial stomata index % of maize and millet genotype
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TABLE 1: A COMPARATIVE QUANTITATIVE FOLIAR EPIDERMAL FEATURES

OF SPECIES OF Zea mays AND Pennisetum glaucum

SPECIE EPIDERMAL STOMATA CELL STOMATA

CELLNUMBER  NUMBER INDEX %

Adnxial 2021 2143 T BS

ea may tretd)

Abasial 2128 1823 4232

Penisetum

glaucum (treated)
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3. 4.

Plates 1 and 2 shows the photographicmicrograph of the adaxial layer of Zea mays (control).

Plates 3 and 4 shows the photographicmicrograph of the adaxial layer of Zea mays (treated).
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7. 8.

Plates 5 and 6 shows the photographicmicrograph of the abaxial layer of Zea mays (control).

Plate 7 and 8 shows the photographicmicrograph of the abaxial layer of Zea mays (treated).
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15. 16.

Plates 13 and 14 shows the photographicmicrograph of the abaxial layer of Pennisetum

glaucum (control).

Plates 15 and 16 shows the photographicmicrograph of the abaxial layer of Pennisetum

glaucum (treated).
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Plate 17 and 18 represents the control and treated plant of Zea mays.

Plates 19 represents the control and treated plant of Pennisetum glaucum
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CHAPTER FOUR
DISCUSSION AND CONCLUSION

4.1 DISSCUSION J

Drought like other environmental stresses affect some physiological and metabolic processes
within a plant (Spollen et al., 1993). Drought result in considerable decrease in whole dry
weight of Zea mays and Pennisetum glaucum as a model crop. In this study, the total dry weight
of Zea mays showed a significant decrease in the treated plant compared to the control while
in the Penisetum glaucum there was a significant increase in whole plant dry weight in contrast
to the control. The reduction in the whole plant dry weight could be attributed to drought effect
to photosynthesis as it affects the gas exchange parameters such as carbon assimilation rate and
stomata conductance (Yin ef al., 2005). Pr(levious studies reported that root/shoot weight ratio
were increased and shoot growth were reduced by drought stress (Alvarez et al., 2009).
Drought stress also increased the root/shoot ratio in (figure 2) of both genotypes, the reason
might be that plant grown under drought stress improved water use efficiency by increasing
the proportion of water absorbing root biomass relatively to water loosing shoot biomass (Lei

et al., 20006).

Photosynthetic pigment such as chlorophyll-a and chlorophyll-b are the main components of
photosystem driving dry matter productio;l. Drought streés lead to a significant reduction in
total chlorophyll content as observed in Zea mays while there was a slight increase in
chlorophyll content of the crop exposed to drought in Pennisetum glaucum. This result confirm
present observation by other researchers that drought stress could increase chlorophyll levels

in millet species under stress condition (Hayat ef al., 2007, Cornic and Massaci, 1990).

The relative water content is used to indicate the extent of dehydration. Changes in leaf water

content is one of the responses of whole plant to drought stress (Matin et al., 1989). The result
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of this study indicated reduction in Zea mays genotype exposed to drought stress while the
Pennisetum glaucum experienced no significant difference. This agreed with the result earlier

reported in maize (Levent Tuna ef al., 2007) and wheat (Agarwal ef al., 2005).

Drought stress led to a reduction in leaf area of Zea mays crop exposed to drought in contrast
to Pennisetum glaucum crop exposed to drought as reported by Stone et al. (2001) where there

was a reduction in response to deficit irrigation in maize and sorghum.

The adaxial surface of the Zea mays always had more stomata than the abaxial surface due to
high transpiration rate with increasing number of stomata (Lake et al, 2002). The
amphistomaotus nature of maize leaves means that they have the capacity to open and close
their stomata on both sides independently, with transpiration rate being more sensitive to
changes in stomata aperture on the surface. In table 1, the adaxial surface showed increase in
stomata index in Zea mays. This result is 1n agreement with Lake er al. (2002) that plant with
higher stomata densities generally have high conductance and photosynthetic rate while the
stomata index in Pennisetum glaucum showed more increased stomata index in the abaxial
surface which indicates that the millet crop has a sunken stomata when transpiration rate is

high as observed by Watling et al. (2001).

These results show that Zea mays and Pennisetun glaucum response to various physiological

responses as induced by drought.

42  CONCLUSION

In conclusion this study showed the effects of drought stress on the growth of maize crop as
well as the drought tolerance ability of millet crop. Thus, the increase in incidence of extreme
weather effect such as drought that could result from global warming can be resolved through

biotechnological approaches by producing crop plant that has high tolerance to drought.
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43 RECOMMENDATION

From the result of this research work I recommend that Pennisetum glaucum should be
substituted for Zea mays in situations or areas where there is little or no availability of water. |
also recommend that through biotechnological techniques creation of drought tolerant specie

of Zea mays should be created and made available to farmers in these areas of low rain fall.
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MAIZE

Replicates Values Mean Standard Standard error

deviation

P i 25.57 12.9 12

Table showing mean, standard deviation and standard error for biomass of maize.
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BIOMASS

PEARL MILLET

Replicates Values Mean Standard Standard error

deviation

1 13.9 55 5.95 T 1.03

e 7 S T 034

Table showing mean, standard deviation and standard error for biomass of pearl millet.
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ROOT/SHOOT RATIO

MAIZE

Replicates Values Mean Standard Standard error

deviation

= R— YRR 1 RS 1

B

0.8

Table showing mean, standard deviation and standard error for root/shoot ratio of maize.
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ROOT/SHOOT RATIO

PEARL MILLET

Replicates Values Mean - Standard Standard error

deviation

s N s T T S ¥ 0.01

R T 0.1133 0.0386 0.02

8 s

Table showing mean, standard deviation and standard error for root/shoot ratio of pearl

millet.
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TOTAL CHLOROPHYLL CONTENT

MAIZE

Replicates Values Mean Standard Standard error

deviation

T 0022 03351 02234  0.03

1 om2 00057 00597 03

i s oizlg :

Table showing mean, standard deviation and standard error for total chlorophyll content

of pearl millet.
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TOTAL CHLOROPHYLL CONTENT

MILLET

Replicates Values Mean Standard Standard error

deviation

e 0.9381 03508 0.4177 0.21

0.6306

3 ' 0.8649

Table showing mean, standard deviation and standard error for total chlorophyll content

of pearl millet.
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RELATIVE WATER CONTENT

MAIZE

Replicates Values Mean - Standard Standard error

‘ _ deviation

L T T R 27.86 115

T T . e 43.133 9.‘ -

3 15.1

Table showing mean, standard deviation and standard error for relative water content of

maize.
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RELATIVE WATER CONTENT

PEARL MILLET

Replicates Values Mean Standard Standard error

deviation

" 2 i 13.23 11.5

i T 533 2527 19.85 7.65

Table showing mean, standard deviation and standard error for relative water content of

pearl millet.
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LEAF AREA

Replicates Values Mean Standard Standard error
deviation
e
J -
-y
1
i

i e v i 36.023 1138 196

Table showing mean, standard deviation and standard error for leaf area of maize.
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LEAF AREA

PEARL MILLET

Replicates Values Mean - Standard Standard error

deviation

1 T 13.973 40119 645

A T R |

Table showing mean, standard deviation and standard error for leaf area of pearl millet.
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