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Subsetting of samples is a promising avenue of research for the continued improvement of prediction models for soil properties
with diffuse reflectance spectroscopy. This study examined the effects of subsetting by soil total carbon (Ct) content, soil order,
and spectral classification with k-means cluster analysis on visible/near-infrared and mid-infrared partial least squares models for
Ct prediction. Our sample set was composed of various Hawaiian soils from primarily agricultural lands with Ct contents from
<1% to 56%. Slight improvements in the coefficient of determination (R2) and other standard model quality parameters were
observed in the models for the subset of the high activity clay soil orders compared to the models of the full sample set. The other
subset models explored did not exhibit improvement across all parameters. Models created from subsets consisting of only low Ct

samples (e.g., Ct < 10%) showed improvement in the root mean squared error (RMSE) and percent error of prediction for low Ct

soil samples. These results provide a basis for future study of practical subsetting strategies for soil Ct prediction.

1. Introduction

Diffuse reflectance spectroscopy (DRS) and chemometric
analysis have become popular subjects of research for their
potential to predict soil carbon and other soil properties.
This methodology could be beneficial for monitoring soil
quality and temporal variation, as well as helping to facil-
itate digital soil mapping efforts. Both visible/near-infrared
(VNIR) and mid-infrared (MIR) spectra show promise for
the prediction of soil total carbon (Ct) and organic carbon,
as well as organic matter, total N, total P, sand, silt, and
clay fractions, cation exchange capacity, and pH (e.g., [1–8]).
Particular attention has been given to soil carbon, which is
an important indicator of soil fertility and biological activity
and is crucial to carbon sequestration endeavors [9–12].

Partial least squares regression (PLSR) appears to be the
most widely used chemometric method for developing pre-
diction models from soil diffuse reflectance spectra. A sample
set is commonly divided into two groups with the larger used
for calibration and the smaller for validation to approximate
true independent model validation, but no clear or consistent
guidelines have been adopted for this process. Model results
are known to vary with different groupings of samples for the
calibration and validation sets. To address this issue, some
studies have created multiple models, each with different
random divisions of the sample set into calibration and
validation sets, to reflect the range of possible results [13, 14].

Highly accurate prediction models are required for DRS
to be an effective method for soil carbon determination in
practical applications. Many statistically robust models have
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been developed (e.g., [5–8, 15]), but a single procedure is
not necessarily the best for producing high quality models
from different soils in different locations. Even models that
have excellent correlation between soil spectra and properties
could be improved. For instance, the robust PLSR models
of McDowell et al. [8] have relatively large errors in Ct

prediction at very low Ct values, which decreases the utility of
the models in situations where low Ct soils or small changes
in Ct are examined. Additional methods are being explored
to produce the most robust and accurate DRS prediction
models possible for different local and global soil datasets.
One promising idea is to split the sample set into groups
based on similar characteristics and to develop individual
prediction models for each of these subsets. In studies of soils
from Poland, Brazil, and Florida (USA), previous researchers
have investigated subsetting by characteristics such as carbon
content, soil order, soil texture, and spectral similarity with
varied success for their particular sample sets [16–18].

The current work aimed to improve the prediction
of Ct with VNIR and MIR DRS by creating attribute-
specific chemometric models. Specifically, we investigated if
predictions from a chemometric model built only from a
subset of samples that are similar with respect to a particular
characteristic (i.e., Ct) will provide better predictions than a
comprehensive model built from a set of all possible samples.
The study investigated the following three subsetting strate-
gies: (1) soil Ct value; (2) soil order; (3) spectral classification
with k-means cluster analysis. Each of the various subset
models was compared against the original full sample set
model to assess the magnitude of changes in the predictions.
This study was built upon the research reported in McDowell
et al. [8]. In that work the authors demonstrated the ability of
DRS to predict Ct in Hawaiian soils. The success of different
wavelength ranges (i.e., VNIR versus MIR) and chemometric
methods was investigated, as well. Because these ideas have
been previously explored in McDowell et al. [8], they will not
be discussed further here.

2. Materials and Methods

2.1. Sample Collection and Preparation. The sample set for
this study is composed of 307 soil samples collected across
the five main Hawaiian Islands of Kauai, Oahu, Molokai,
Maui, and Hawaii, illustrated in Figure 1. Two hundred
and sixteen of these samples were collected from 1981 to
2007 and stored in the archive at the Natural Resources
Conservation Service (NRCS) National Soil Survey Center
in Lincoln, Nebraska, and the remaining 91 samples were
newly collected in 2010. Within this full set of samples, 10
soil orders and more than 100 soil series are represented.
Samples were predominantly from a variety of agricultural
soils, hosting over 25 different crop types. The majority of
samples are of surface soils (∼77%), and the remainder are
of corresponding subsurface soil horizons from 17 of the
collection sites. The soil samples were dried and sieved to
retain the less than 2 mm fraction for VNIR DRS analysis.
A portion of each sample was also ball-milled to less than
250 µm for MIR DRS analysis.

Andisol
Aridisol
Entisol
Histosol
Inceptisol

Mollisol
Oxisol
Spodosol
Ultisol
Vertisol

Soil order

0 25 50 100 150 200

Kilometers N

Figure 1: Distribution of soils sample collection sites throughout
the Hawaiian Islands with symbol color indicating soil order.

2.2. Traditional Total Carbon Analysis. Dry combustion was
used to measure the Ct of ball-milled soil samples. Several of
the samples obtained from the NRCS archive were previously
measured for Ct by dry combustion before storage. All
remaining samples were analyzed at the Agricultural Diag-
nostic Services Center (ADSC) at the University of Hawaii
Mānoa with an LECO CN2000 combustion gas analyzer [19].
A small portion of the previously measured NRCS archive
samples were reanalyzed at ADSC to provide a cross-check
of the values obtained from different laboratories. The Ct

values of the full sample set range from <1% to 56% with
a distribution weighted toward the lower Ct end.

2.3. Visible/Near-Infrared Diffuse Reflectance Spectroscopy.
Visible/near-infrared diffuse reflectance spectra were col-
lected from the 2 mm sieved soil samples with an Agrispec
spectrometer and muglight light source (Analytical Spectral
Devices, Inc., Boulder, CO, USA). The Agrispec has three
detectors with a combined spectral range of 350 to 2500 nm,
sampling interval of 1 nm, and spectral resolution from
3 nm (at 700 nm) to 10 nm (at 1400 nm). Each soil sample
was measured three times, with the sample cup rotated 20◦

between each measurement. The three spectra were averaged
to produce the final spectrum for each sample. A Spectralon
(Labsphere, North Sutton, NH, USA) white reference was
measured as a reference spectrum to begin each session and
again every 30 minutes or less thereafter. A slight offset in
reflectance between the range covered by the first and second
detectors was observed in many spectra, and, therefore,
we removed the narrow region of 990–1010 nm from the
final spectra for analysis. The VNIR spectra of these soils
commonly exhibit features associated with OH−, H2O, iron
oxides, phyllosilicates, and organic molecules. For regression
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analysis the spectra were transformed using the pretreatment
identified as most effective for this data set in McDowell
et al. [8]. For the VNIR spectra, this optimal preprocessing
transformation was mean normalization.

2.4. Mid-Infrared Diffuse Reflectance Spectroscopy. Mid-
infrared diffuse reflectance spectra were collected from the
ball-milled samples in neat form with a Scimitar 2000 FTIR
spectrometer (Varian, Inc., now Agilent Technologies, Santa
Clara, CA, USA) and diffuse reflectance infrared Fourier
transform (DRIFT) accessory. The spectral range is 400 to
6000 cm−1, with a sampling interval of 2 cm−1 and spectral
resolution of 4 cm−1 (note: the range of our MIR spectra
overlaps slightly with the range of our VNIR spectra.) Spectra
were corrected for background atmospheric and instrument
effects by the subtraction of the spectrum of KBr powder
measured between every seven samples, but features in
two narrow regions persisted. Therefore, we excluded the
regions of 1350–1419 cm−1 and 2281–2449 cm−1 from the
analysis. Features in the MIR spectra of these soils are
attributable to OH−, organic molecules, and a variety of
silicate minerals. Based on the findings of McDowell et al.
[8], before regression analysis the Savitzky-Golay 1st deriva-
tive transformation was applied to the MIR spectra as this
was determined to be the most effective pretreatment for this
data set.

2.5. Regression Analysis. Partial least squares regression
(PLSR) was employed to develop the chemometric mod-
els for Ct prediction. Models were generated using the
Unscrambler X Software package (CAMO Software Inc.,
Woodbridge, NJ, USA). The spectral range included in the
analysis was decreased slightly by removing any high noise
portions at the limit of the range; therefore, the VNIR spectra
were restricted to the range of 425–2450 nm, and the MIR
spectra were restricted to 489–5300 cm−1. All spectra were
mean centered for PLSR analysis. The optimal number of
factors for regression was chosen individually for each model
based on maximizing the explained variance but minimiz-
ing the possibility of over fitting. We considered several
parameters when assessing the quality of models, including
the coefficient of determination (R2), root mean squared
error (RMSE), residual prediction deviation (RPD) [20], and
the ratio of performance to interquartile distance (RPIQ)
[21]. We defined the RPD as the ratio of the standard
deviation of the validation set to the standard error of
prediction (RPD = SD/SEP) and the RPIQ as the ratio of
the interquartile distance of the validation set to the standard
error of prediction (RPIQ = IQ/SEP), where the interquartile
distance is the difference between the third and first quartiles
(IQ = Q3 −Q1). With respect to these general model quality
parameters, the best model would have the highest R2, RPD,
and RPIQ, and the lowest RMSE. We also examined the
success of the predictions for individual samples using the
percent error, calculated as the absolute difference between
the measured (i.e., by combustion) and predicted (i.e., by
DRS) Ct values, divided by the measured value, and multi-
plied by 100.

2.6. Sample Subsetting. The motivation behind our selected
subsetting strategies was to improve Ct prediction while
still retaining the simplicity that makes DRS attractive. We
focused on subsetting criteria that did not require additional
highly detailed soil characterization, instead relying on
general soil data and information within Soil Taxonomy.

2.6.1. Ct Content Subsets. A simple grouping of soils into low
and high Ct was used for subsetting by Ct value. Preliminary
work tested a variety of low Ct/high Ct divisions (e.g., 2, 4,
6, 8, and 10% Ct) iteratively. The initial results showed that a
cutoff of 10% Ct was most promising and therefore was used
for the final analysis. Additionally, a division at 10% allows
for fairly easy assignment of unknown soils into low or high
Ct groupings from Ct estimates based on general or readily
available soil information.

To approximate independent validation, samples were
randomly split into a group of 70% for model calibration
and 30% for model validation. This random selection was
repeated to produce 10 iterations of calibration/validation
pairs from the full sample set. After this split, the samples
from each iteration were divided into low Ct (<10%) and
high Ct (>10%) subsets. Separate VNIR and MIR regression
models were then developed from the low Ct and high Ct

portions of each of the 10 iterations. For comparison, VNIR
and MIR regression models from the full sample set using
these same 10 calibration and validation divisions, but no
separation by Ct value, also were created.

2.6.2. Soil Order Subsets. Four broad soil groups were created
based on general similarity of soil order and number of
samples available of that type. The allophane-dominated
volcanic Andisol soils comprised one group (n = 96), the
Aridisol, Entisol, Inceptisol, Mollisol, and Vertisol soils were
combined to make a second group (high activity clay soils;
n = 101), Oxisol and Ultisol soils made a third group (low
activity clay soils; n = 75), and Histosol and Spodosol soils
comprised the fourth group (organic-dominated soils; n =
26). These soil groupings are based upon information con
tained in Soil Taxonomy allowing for the development of
soil groups according to clay mineralogy and soil organic
matter. Table 1 provides information on additional soil
properties for each soil subset where available. The average
spectra for each of these soil groups are shown in Figure 2.
Nine soil samples from the NRCS archive had no recorded
taxonomic classification and therefore were not included in
these subsets.

The full sample set was randomly divided 10 times into
a group of 70% of samples to be used for the calibration of
the regression models and 30% of the samples to be used for
validation. After this division, the samples of each of the ten
iterations were grouped according to soil order as described
above. Separate VNIR and MIR regression models were then
developed for each soil group subset within each of the ten
calibration/validation iterations. Because the number of low
activity clay and organic-dominated soil samples was small
(e.g., ≤80), full cross validation (i.e., leave-one-out cross
validation) was used with the regression models for these
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Figure 2: Average (a) visible/near-infrared (VNIR) and (b) mid-
infrared (MIR) diffuse reflectance spectra of soil groups used in sub-
setting by soil order. Dashed lines represent one standard deviation
from the average.

two groups rather than committing 30% of those samples
to validation as with the other subsets. Additional models
were created from the 10 calibration/validation divisions
of the full sample set with no separation of soil order for
the comparison of results without subsetting. A full cross
validation model of the full sample set was developed to be
compared with the low activity clay and organic-dominated
soil subsets’ full cross validation models.

2.6.3. Spectral Classification Subsets. Our rationale behind
grouping soil samples by spectral character is based on
the assumption that this approach removes major spectral
variation from consideration so that small-scale variation is
used to produce a more refined Ct prediction model. Also,
the division of soil samples into subsets created solely from

spectral classification has the advantage of requiring no
additional information about the soil.

The spectral classification subsets were created by k-
means cluster analysis with Unscrambler X . Spectra were
assigned to three cluster subsets based on the minimum
Euclidean distance to cluster centers. Separate analyses were
conducted for the VNIR and MIR spectra, resulting in
different combinations of samples in their cluster subsets.
The spectral range used for these cluster analyses was
limited to the regions most relevant to carbon prediction
as previously determined by the PLSR variable significance
analysis by McDowell et al. [8]. Specifically, the ranges used
were 600–750, 898–990, 1910–1938, 2070–2150, and 2288–
2316 nm for the VNIR spectra and 1500–1870, 3650–3690,
4235–4260, 4305–4330, 4410–4455, and 5280–5245 cm−1 for
the MIR spectra. Each cluster subset was randomly divided
into a group of 70% for model calibration and a group of
the remaining 30% for model validation, unless the number
of samples in the cluster was small (e.g., ≤80), in which
case samples were not divided and full cross validation was
performed. The random division into calibration and val-
idation groups was repeated nine more times to give 10
calibration/validation pairs for each of the VNIR and MIR
cluster subsets. Separate Ct prediction models were created
for each of the different cluster subsets. For comparison, we
also developed 10 VNIR and 10 MIR models from the full
sample set. The calibration and validation groups for these
models were created by combining the respective calibration
or validation groups from the three different cluster subset
models. VNIR and MIR full cross validation models using
the full sample set were also produced to compare with full
cross validation models from small cluster subsets.

3. Results and Discussion

3.1. Modeling ofCt Content Subsets. The VNIR models subset
by Ct content produced the results summarized in Table 2
and plotted in Figure 3(a). The range of results from the 10
random divisions of the samples into 70% calibration and
30% validation groups is given along with their mean value.
The R2, RPD, and RPIQ values for the low Ct subset were not
as good as those produced using the full sample set, though
the RMSE values were lower for the low Ct subset. The results
for the high Ct models approached, but were not quite as
good, as the results from the full sample set.

Results from the MIR Ct subset models are shown in
Figure 3(b) and Table 3. The models produced by the low
Ct subset were generally of lesser quality than those of the
full sample set, with the exception of better RMSE values, a
trend similar to the VNIR models. The high Ct models were
comparable overall to the high quality models produced by
using the full sample set.

From these results, it appears that a separate high Ct pre-
diction model is not an improvement over a model utilizing
the full Ct range of available samples for either the VNIR or
MIR spectra from this data set. This statement may be true
for a separate low Ct prediction model as well, but the benefit
of a lower RMSE should also be considered.
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Table 2: Detailed partial least squares regression model results for soil total carbon (Ct) prediction from the subsets of visible/near-infrared
diffuse reflectance spectra based on Ct content. The range of values reflects the results of 10 random iterations of the models, and the number
in parentheses is the mean. Detailed results are also given for full sample set models with no subsetting for comparison.

Calibration Validation

na R2,b RMSE (%)c n R2 RMSE (%) RPDd RPIQe

Ct < 10% 133–147
0.43–0.80 1.08–1.78

56–70
0.47–0.76 1.27–1.97 1.37–2.03 1.77–2.88

(0.64) (1.46) (0.61) (1.59) (1.63) (2.12)

Ct > 10% 68–82
0.77–0.93 3.86–7.00

22–36
0.77–0.91 3.96–7.65 2.05–3.21 2.38–5.16

(0.86) (5.33) (0.84) (5.87) (2.55) (4.02)

Full sample set 215
0.81–0.96 2.88–5.87

92
0.81–0.95 2.82–7.18 2.27–4.47 2.08–4.35

(0.91) (4.06) (0.91) (4.24) (3.46) (3.19)
a
Number of samples.

bCoefficient of determination.
cRoot mean squared error.
dResidual prediction deviation.
eRatio of performance to interquartile distance.

Table 3: Detailed partial least squares regression model results for soil total carbon (Ct) prediction from the subsets of mid-infrared diffuse
reflectance spectra based on Ct content. The range of values reflects the results of 10 random iterations of the models, and the number in
parentheses is the mean. Detailed results are also given for full sample set models with no subsetting for comparison.

Calibration Validation

na R2,b RMSE (%)c n R2 RMSE (%) RPDd RPIQe

Ct < 10% 133–147
0.86–0.99 0.21–0.87

56–70
0.71–0.86 0.94–1.26 1.84–2.64 2.24–3.66

(0.94) (0.58) (0.82) (1.10) (2.34) (3.05)

Ct > 10% 68–82
0.91–0.99 1.11–4.47

22–36
0.90–0.95 3.48–4.93 3.18–4.29 3.10–8.42

(0.95) (3.10) (0.92) (4.17) (3.55) (5.75)

Full sample set 215
0.94–0.99 1.61–3.40

92
0.91–0.96 2.87–4.48 3.33–4.87 2.36–5.69

(0.96) (2.61) (0.94) (3.38) (4.07) (3.74)
a
Number of samples.

bCoefficient of determination.
cRoot mean squared error.
dResidual prediction deviation.
eRatio of performance to interquartile distance.

Results varied for previous studies examining the behav-
ior of separate models based on carbon content. Madari et
al. [16] found that limiting the Ct in their NIR and MIR
calibration models to 0.4–99.10 g kg−1 and 0.4–39.90 g kg−1

decreased the not only R2, but also the root mean squared
deviation (RMSD) compared to the original NIR and MIR
models (0.4–555 g kg−1 Ct); this behavior is similar to that
observed in the low Ct models presented here. The study by
Vasques et al. [18] developed separate VNIR organic carbon
prediction models for their mineral and organic soil samples,
which roughly correspond to division by carbon content in
this case (mineral soils, 0.01–14.70% carbon; organic soils,
13.52–57.54% carbon). Compared to the original combined
model, the R2 improved for both of the subset models, but
the RMSE decreased for the lower carbon mineral group and
increased for the higher carbon organic group. The increase
in R2 values for the subset models differs from what is seen
in our work and that of Madari et al. [16] and is an example
of soils with different characteristics responding differently
to the same treatment.

3.2. Modeling of Soil Order Subsets. The results of the VNIR
models from the soil order subsets are given in Table 4 and
Figure 4(a). The models from the Andisol subset did not per-
form as well as the models using the full sample set. The R2,
RMSE, and RPD values for the high activity clay subset were
similar to those of the full sample set models, but the RPIQ
values were generally slightly lower. The low activity clay
and organic-dominated subsets were not validated with an
independent validation set due to small sample numbers, and
therefore their results may be overly optimistic. Compared to
a full cross validation of a model created from the full sample
set, the low activity clay subset model did not perform as well,
except when considering the RMSE parameter, whereas the
organic-dominated subset model is broadly similar.

Table 5 and Figure 4(b) show the results of the MIR soil
order subset models. The models produced by the Andisol
subset had no improvement on the models produced by
the full sample set. Results for the high activity clay subset
models were as good as or better than the full sample set
model results, with the exception of lower RPIQ values. The
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Figure 3: Visual assessment of partial least squares regression model results for soil total carbon (Ct) prediction from subsets of (a)
visible/near-infrared (VNIR) and (b) mid-infrared (MIR) diffuse reflectance spectra based on Ct content. The parameters given are the
coefficient of determination (R2), root mean squared error (RMSE, %), residual prediction deviation (RPD), and the ratio of performance
to interquartile distance (RPIQ). The range of values reflects the results of 10 random iterations of the models. Results are also shown for
full sample set models with no subsetting for comparison.

overall performance of the low activity clay and organic-
dominated subset models using full cross validation was not
quite as good as the full cross validation model from the full
sample set.

These results suggest that a separate prediction model for
the high activity clay soil orders may have a slight advantage
compared to a model with all available soil orders for both
the VNIR and MIR spectra of this data set. Separate predic-
tion models for the other soil order subsets do not appear to
be as promising.

A study by Madari et al. [16] also investigated the benefits
of subsetting their samples according to soil order. The
authors produced separate models for the Histosols and Spo-
dosols, the Ferralsols (classification according to the World

Reference Base [22], approximately equivalent to most of the
Oxisol soil order), and the Acrisols (classification according
to the World Reference Base [22], consisting of many Ultisol
suborders and some Oxisols). The results of these models
varied. The Ferralsol and the Acrisol NIR and MIR models
had lower R2 than the original model and also lower RMSD;
these two subsets included relatively low Ct (2–85.10 g kg−1

and 1.70–91.60 g kg−1, resp.) compared to the full sample
set (0.40–555 g kg−1), so this lower R2 and lower RMSD
are a similar behavior to the low Ct subset models in the
current study. The Histosol and Spodosol subset NIR and
MIR models in Madari et al. [16] resulted in slightly higher
R2 values and much higher RMSD values. Our Histosol and
Spodosol (i.e., organic-dominated soils) subset models did
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Table 4: Detailed partial least squares regression model results for soil total carbon (Ct) prediction from the subsets of visible/near-infrared
diffuse reflectance spectra based on soil order. The range of values reflects the results of 10 random iterations of the models, and the number
in parentheses is the mean. Detailed results are also given for full sample set models with no subsetting for comparison. For models with full
cross validation (i.e., leave-one-out cross validation), the same samples used to calibrate the model were used to validate the model.

Calibration Validation

na R2,b RMSE (%)c n R2 RMSE (%) RPDd RPIQe

Andisol soils 64–71
0.62–0.86 2.71–7.75

25–32
0.37–0.93 3.38–7.48 1.01–3.80 1.29–3.38

(0.72) (4.64) (0.69) (4.85) (2.02) (2.28)

High activity clay soils 67–72
0.86–0.98 2.38–5.17

29–34
0.74–0.98 2.19–6.31 1.89–7.74 0.71–3.03

(0.93) (3.73) (0.90) (4.02) (4.12) (1.68)

Low activity clay soils 75 0.82 0.72 Full cross validation 0.74 0.90 1.93 1.82

Organic-dominated soils 26 0.96 3.35 Full cross validation 0.92 5.16 3.30 6.26

Full sample set 215
0.82–0.96 2.89–5.96

92
0.79–0.95 2.96–6.03 2.25–4.43 2.07–4.53

(0.92) (3.89) (0.91) (4.02) (3.58) (3.42)

Full sample set 307 0.95 3.09 Full cross validation 0.94 3.39 4.09 3.80
a
Number of samples.

bCoefficient of determination.
cRoot mean squared error.
dResidual prediction deviation.
eRatio of performance to interquartile distance.

Table 5: Detailed partial least squares regression model results for soil total carbon (Ct) prediction from the subsets of mid-infrared diffuse
reflectance spectra based on soil order. The range of values reflects the results of 10 random iterations of the models, and the number in
parentheses is the mean. Detailed results are also given for full sample set models with no subsetting for comparison. For models with full
cross validation (i.e., leave-one-out cross validation), the same samples used to calibrate the model were used to validate the model.

Calibration Validation

na R2,b RMSE (%)c n R2 RMSE (%) RPDd RPIQe

Andisol soils 64–71
0.84–0.96 1.92–3.02

25–32
0.41–0.92 2.99–6.94 1.12–3.60 1.87–4.09

(0.91) (2.49) (0.79) (4.03) (2.33) (2.66)

High activity clay soils 67–72
0.96–0.99 0.96–2.71

29–34
0.95–0.99 1.70–3.60 4.34–9.81 0.92–4.38

(0.98) (1.74) (0.96) (2.65) (5.57) (2.44)

Low activity clay soils 75 0.98 0.24 Full cross validation 0.79 0.80 2.10 2.01

Organic-dominated soils 26 0.97 2.9 Full cross validation 0.86 6.7 2.52 4.78

Full sample set 215
0.94–0.98 1.94–3.50

92
0.91–0.96 2.74–3.91 3.38–5.07 3.22–5.27

(0.96) (2.78) (0.94) (3.39) (4.07) (3.89)

Full sample set 307 0.95 3.12 Full cross validation 0.94 3.52 3.94 3.68
a
Number of samples.

bCoefficient of determination.
cRoot mean squared error.
dResidual prediction deviation.
eRatio of performance to interquartile distance.

not have significantly increased R2 values, but the validation
RMSE values were greater than the full sample set models’
values.

Vasques et al. [18] developed separate organic carbon
prediction VNIR models for each of the seven soil orders in
their sample set consisting of soils from Florida, southeastern
USA Compared to the original model containing all of these
mineral soil samples, six of the seven soil order subset models
resulted in improved R2 values (Alfisols, Entisols, Inceptisols,
Mollisols, Spodosols, and Ultisols). The RMSE values were
also similar or better for these subsets. The Histosol subset

model was the only one that did not improve in R2 or RMSE.
These results are somewhat different from those in this study,
where only the high activity clay soils (i.e., Aridisols, Entisols,
Inceptisols, Mollisols, and Vertisols) are suggested to provide
an overall improvement on models including all available
samples.

3.3. Modeling of Spectral Classification Subsets. The k-means
cluster analysis of the VNIR spectra resulted in an unequal
distribution of samples between the three clusters. The
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Figure 4: Visual assessment of partial least squares regression model results for soil total carbon (Ct) prediction from subsets of (a)
visible/near-infrared (VNIR) and (b) mid-infrared (MIR) diffuse reflectance spectra based on soil order. The parameters given are the
coefficient of determination (R2), root mean squared error (RMSE, %), residual prediction deviation (RPD), and the ratio of performance
to interquartile distance (RPIQ). The range of values reflects the results of 10 random iterations of the models. Results are also shown for
full sample set models with no subsetting for comparison.

Cluster 0 subset consisted of only 78 samples (∼3–56% Ct)
and therefore all 78 samples were used in its model calibra-
tion and full cross validation. The Cluster 1 and Cluster 2
subsets contained 124 samples (∼0–23% Ct) and 105 sam-
ples (∼0–14% Ct), respectively, allowing for the independent
validation of the models as initially planned. The results of

the 10 VNIR Ct prediction models from each of the clusters
are given in Table 6 and Figure 5(a). A comparison of the
Cluster 0 subset model with a full cross validation model
of the full sample set showed that the subset model was not
quite as robust, though it did produce a higher RPIQ value.
The Cluster 1 and Cluster 2 subset models’ results generally
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Figure 5: Visual assessment of partial least squares regression model results for soil total carbon (Ct) prediction from the subsets of (a)
visible/near-infrared (VNIR) and (b) mid-infrared (MIR) diffuse reflectance spectra based on spectral classification with k-means cluster
analysis. The parameters given are the coefficient of determination (R2), root mean squared error (RMSE, %), residual prediction deviation
(RPD), and the ratio of performance to interquartile distance (RPIQ). The range of values reflects the results of 10 random iterations of the
models. Results are also shown for full sample set models with no subsetting for comparison.

had lower (i.e., better) RMSE values, but were otherwise not
quite as robust as the full sample set models’ results.

In the cluster analysis of the MIR spectra, the distribution
of samples was heavily weighted toward the Cluster 0 (137
samples, ∼0–52% Ct) and Cluster 2 (132 samples, ∼0–
11% Ct) subsets. The Cluster 1 subset contained only 38
samples (∼15–56% Ct) and was validated with full cross
validation instead of independent validation. Table 7 and
Figure 5(b) present the results of the prediction models from

the cluster subsets, as well as those from the full sample set
models for comparison. The results for the Cluster 0 subset
models are broadly similar to those of the full sample set
models but overall they are not an improvement. Results
from the full cross validation of Cluster 1 subset were slightly
higher for calibration but much lower for validation than the
full cross validation of the full sample set. In general, the
Cluster 1 model is not as robust as the full sample set model.
The overall performance of Cluster 2 subset models is not
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Table 6: Detailed partial least squares regression model results for soil total carbon (Ct) prediction from the subsets of visible/near-infrared
diffuse reflectance spectra based on spectral classification with k-means cluster analysis. The range of values reflects the results of 10 random
iterations of the models, and the number in parentheses is the mean. Detailed results are also given for full sample set models with no
subsetting for comparison. For models with full cross validation (i.e., leave-one-out cross validation), the same samples used to calibrate the
model were used to validate the model.

Calibration Validation

na R2,b RMSE (%)c n R2 RMSE (%) RPDd RPIQe

Cluster 0 78 0.93 4.52 Full cross validation 0.88 5.87 2.86 5.40

Cluster 1 87
0.68–0.88 1.92–3.26

37
0.60–0.91 1.74–3.47 1.54–3.33 1.94–5.50

(0.77) (2.86) (0.75) (2.89) (2.16) (3.14)

Cluster 2 73
0.54–0.96 0.65–2.22

32
0.62–0.91 0.98–1.72 1.67–3.34 0.79–2.56

(0.81) (1.29) (0.80) (1.33) (2.39) (1.71)

Full sample set 215
0.83–0.96 2.82–5.84

92
0.74–0.95 3.10–5.83 1.89–4.54 1.80–3.92

(0.90) (4.30) (0.88) (4.30) (3.28) (3.06)

Full sample set 307 0.95 3.09 Full cross validation 0.94 3.39 4.09 3.80
a
Number of samples.

bCoefficient of determination.
cRoot mean squared error.
dResidual prediction deviation.
eRatio of performance to interquartile distance.

Table 7: Detailed partial least squares regression model results for soil total carbon (Ct) prediction from the subsets of mid-infrared diffuse
reflectance spectra based on spectral classification with k-means cluster analysis. The range of values reflects the results of 10 random
iterations of the models, and the number in parentheses is the mean. Detailed results are also given for full sample set models with no
subsetting for comparison. For models with full cross validation (i.e., leave-one-out cross validation), the same samples used to calibrate the
model were used to validate the model.

Calibration Validation

na R2,b RMSE (%)c n R2 RMSE (%) RPDd RPIQe

Cluster 0 96
0.78–0.96 1.49–4.07

41
0.55–0.91 2.08–4.67 1.13–3.20 1.77–5.65

(0.90) (2.45) (0.81) (3.43) (2.34) (3.31)

Cluster 1 38 0.98 1.89 Full cross validation 0.86 5.19 2.62 3.93

Cluster 2 92
0.88–0.99 0.15–0.58

40
0.77–0.90 0.39–0.82 1.50–2.84 1.30–3.33

(0.95) (0.33) (0.85) (0.56) (2.36) (2.33)

Full sample set 215
0.93–0.98 1.68–3.61

92
0.92–0.95 2.94–3.78 3.48–4.68 2.61–4.61

(0.95) (2.98) (0.94) (3.38) (4.03) (3.82)

Full sample set 307 0.95 3.12 Full cross validation 0.94 3.52 3.94 3.68
a
Number of samples.

bCoefficient of determination.
cRoot mean squared error.
dResidual prediction deviation.
eRatio of performance to interquartile distance.

quite as good as the full sample set models, but the limited
Ct range of Cluster 2 subset is apparent from its much lower
range of RMSE values.

For this sample set, the spectral classification by k-means
clustering and separate prediction model for each cluster was
not an obvious improvement over the original full VNIR
or MIR models. The most noticeable difference is the lower
RMSE for the subset models from clusters limited to low Ct

values.
We have found one other study that investigated the effect

of subsetting a sample set by spectral classification for the
prediction of soil carbon. Cierniewski et al. [17] tested the

effect of four different unsupervised classification algorithms
(k-means, expectation-maximization, Ward’s Euclidean dis-
tance, and Lance and Williams’ Euclidean distance) on
simple linear regression results from VNIR data. These
clustering algorithms produced five or six clusters, and the
number of samples per cluster ranged from four to 56. This is
in contrast to the method of k-means cluster analysis used in
our study, where we specified that three clusters be produced
to decrease the probability of a very low number of samples
in a cluster that would not be adequate for robust modeling.
Cierniewski et al. [17] found that the majority of their cluster
subsets had improved R2 values compared to the original
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full sample set. An increase in R2 was not observed for the
spectral classification subsets in the current work. Instead,
the most significant improvement was a lower RMSE for
many of the cluster subset models. Because other parameters
such as RMSE were not provided in Cierniewski et al. [17],
it is difficult to determine if this behavior is an effect of their
subsetting study.

3.4. Percent Error of Prediction. The subset models with
improved RMSE values but an otherwise less-robust per-
formance may still hold an advantage over the original full
sample set model. If a more accurate prediction of the low
Ct samples makes a significant contribution to the lowered
RMSE, the model could be very helpful in addressing the
issue of large errors at low Ct values. To evaluate the error
at these low Ct values, the percent error of prediction was
calculated for the samples with Ct values less than 10% and
the average value was reported for each model (Figure 6). We
use percent error rather than RMSE for comparing the subset
models with the full sample set model to normalize the error
of the predicted value with respect to its measured value.

The mean value of the average percent error for each
of the ten iterations of the full sample set model is ∼160–
200%, but the average percent error for a single model
could be up to almost 400% (Figure 6). For example, with
a measured value of 1% Ct, an error of 400% would be
translated to a predicted value of 5% Ct. The MIR full
sample set models have lower average percent error, with a
mean average percent error of ∼135–150% and a maximum
average percent error of ∼200%. Many of the low RMSE
subset models have noticeably lower average percent errors.
The low Ct VNIR and MIR models and the Cluster 2 MIR
models appear to have the most significant improvement,
with average percent errors of ∼80% or less. For a measured
value of 1% Ct, a percent error of 80% would reduce the
predicted value to 1.8% Ct . Clusters 1 and 2 VNIR models
also show moderate improvement, with all average percent
error results below ∼175%. The average percent error of the
low activity clay soils full cross validation model is slightly
lower than the full sample set model for both the VNIR
and MIR data. The organic-dominated soils subset includes
only two samples with Ct <10%, so a comparison of average
percent error is not as reliable in this case.

The subsets with the largest decreases in average percent
error of prediction at low Ct content (i.e., Ct < 10%) are
the ones that included only low Ct samples in their models.
The low Ct VNIR and MIR models contained samples with
Ct values between ∼0 and 9.9% Ct, and the Cluster 2 MIR
models had samples with Ct values between ∼0 and 11% Ct.
These results suggest that a separate model for low Ct

samples is beneficial for the accuracy of prediction for the
samples in this range. This advantage is indicated by the
RMSE of low Ct models, but may not be obvious from the R2

parameter. The issue of relatively large errors of prediction
for samples with very low Ct content has been understudied.
To our knowledge there are no studies that have provided
quantitative information addressing the degree of scatter
observed for low Ct soils on most predicted versus measured
plots.

3.5. Variation in Model Parameters. The ranges of PLSR
model parameters produced by the 10 iterations of random
calibration/validation set divisions in this study appear to
be larger than the ranges of values encountered in previous
studies where multiple PLSR model iterations were used.
Brown et al. [13] reported results for five models produced
from different random divisions of the sample set into 70%
calibration and 30% validation groups. Values for organic
carbon prediction from VNIR data ranged from 0.75 to 0.86
for R2, 1.08 to 1.26 for RMSD, and 1.95 to 2.62 for RPD.
Mouazen et al. [14] included three model iterations with
random divisions into 90% calibration and 10% validation
groups in their study. The exhaustive results are not reported,
but visual estimation from plots of the mean and standard
deviation for the R2 and RMSE from the organic carbon
prediction models suggests that the variation is similar to
that in Brown et al. [13] or less. The greater range in model
parameters observed in our study may be related to the
testing of a greater number of iterations (i.e., 10 rather than
five or three), or it could be related to a less obvious attribute,
such as a greater variation in a spectral character within the
sample set.

4. Summary and Conclusions

Our research has provided an introduction to the under-
studied idea of sample subsetting based on criteria that are
simple and easily applied. This particular investigation of
subsetting for Ct prediction had varied results with our
Hawaiian soils sample set. Of all the different subset models
created based on Ct content, soil order, and spectral classi-
fication, the subset of high activity clay soil orders was the
only one to show improvement across all parameters (i.e.,
R2, RMSE, RPD, and RPIQ) compared to the full sample
set. Notably, one significant advantage was discovered; the
subsets including only low Ct samples (e.g., Ct < 10% subset,
MIR Cluster 2 subset) produced models with much lower
RMSE values compared to the full sample set models, even
though the other model parameters were not as robust. The
lower RMSE for these models corresponds to a significant
decrease in the percent error of predictions for low Ct

samples, which could be very helpful for the analysis of
soils with low Ct content or monitoring of small changes in
Ct . Incorporation of a low Ct subset model in the future
prediction of unknown soils Ct values could be done by first
employing a model created with the full possible range of Ct

values and then utilizing the separate low Ct subset model if
the soil is predicted to have low Ct.

As seen from this study and previous studies, the effect of
subsetting can have different results depending on the char-
acter of the sample set and the number of samples it includes.
A small sample size may have limited the improvement
possible by subsetting in the current work. In an effort to
keep the size of subsets large enough for regression analysis,
the subsetting may have been too coarse (e.g., too few subsets
for Ct prediction by soil order and spectral classification).
The types of subsetting strategies explored here may be
most helpful for large datasets and should be tested with
further research. Regardless of the strategy used to develop
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Figure 6: Average percent error of the Ct <10% portion of the (a) visible/near-infrared (VNIR) and (b) mid-infrared (MIR) subset and full
sample set models in this study. The range of values reflects the results of 10 random iterations of the models. The VNIR and MIR high Ct

models and the MIR Cluster 1 models were not included because all samples had Ct >10%.
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a model, our results suggest that multiple iterations of
models with different calibration/validation groupings may
help to produce a more complete picture of the overall model
quality.
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