DEDICATION

I dedicate this work to the Almighty God who has been my source of Strength, Grace and Wisdom throughout the period of my course, through whose Grace and Favor I have been able to run my course and scale through the hurdles of my academic pursuit.

DECLARATION OF ORIGINALITY

This project is all my own work and has not been copied in part or in whole from any other source except where duly acknowledged. As such, all use of previously published work (from books, journals, magazines, internet, etc.) has been acknowledged within the main report to an entry in the References list.

I agree that an electronic copy or hardcopy of this report may be stored and used for the purposes of plagiarism prevention and detection.

I understand that cheating and plagiarism constitute a breach of University Regulations and will e dealt with accordingly.

Copyright

The copyright of this project and report belongs to Federal University, Oye-Ekiti.

Signed:

Date:

Office Stamp

CERTIFICATION

This is to certify that this project report with the title "Digital Image Encryption Using Discrete Cosine Transformation" was carried out by Awe Iyioluwa Samson under the Supervision of:

.....

••••••••••••••••

Supervisor

Date

ABSTRACT

In this project work, a cryptographic system is developed using the Discrete Cosine Transformation technique with the aim of encrypting images without losing little or no value of its initial pixel value. The encryption of the image is performed by converting the selected image into a matrix using the image pixel values, then transforming the image pixel using the Discrete Cosine Transformation Technique. The result of the encrypting process is image with altered pixel values and a sequential representation of black, brown and white colors in a sequential order. The tools used in the development of the system are: NetBeans IDE 8.1, Abstract Windows Toolkit and the JAVA programming language.

TABLE OF CONTENT

Dedication	i
Declaration of Originality	ii
Certification	iii
Abstract	iv
Table of Contents	v
List of Figures	viii
List of Tables	ix
Acknowledgements	Х
CHAPTER ONE: INTRODUCTION	
1.1 Background to the Study	1
1.2 Statement of the Problem	3
1.3 Motivation	3
1.4 Project Aim and Objectives	4
1.5 Project Report Structure	4
CHAPTER TWO-LITERATURE REVIEW	
2.1 Image Cryptography	6
2.2 Image Cryptography Techniques	7
2.2.1 Image Cryptography Using Hash Function	8
2.2.2 Image Cryptography Using the Chaotic Algorithm	10
2.2.3 Image Cryptography Using the Block Based Transformation Algorithm	11
2.2.4 Image Cryptography Using the Genetic Algorithm	13
2.2.5 Image Encryption Using the Hyper Chaotic Algorithm	13

2.2.6 Image Cryptography Using Digital Holography	15
2.3 Image Cryptography Using Image Compression Technique	16
2.3.1 Lossless Compression	17
2.3.2 Lossy Compression Technique	20
2.4 Image Encryption Using the Discrete Cosine Transformation	23
2.4.1 Definition of DCT	24
2.4.2 Quantization	25
2.4.3 Coding	26
CHAPTER THREE	
3 METHODOLOGY	28
3.1 Requirements Specification	28
3.1.1 Requirement Gathering Technique	28
3.1.2 Functional Requirement Specification	28
3.1.3 Non-functional Requirement Specification	29
3.2 Analysis	30
3.2.1 Existing System	30
3.2.2 The Image Encryption System	30
3.3 Design	30
3.3.1 System Architecture of the Image Encryption System	31
3.3.1.1 Capture Image	31
3.3.1.2 Save Captured Image	31
3.3.1.3 Open File Chooser/Select Image	31
3.3.2 Encryption Module	32

3.3.2.1 Convert Image to 2-Dimensional Form	32
3.3.2.2 Image Conversion Module	33
3.3.2.3 Image Filtering Module	33
3.3.2.4 Image Encryption Module	34
3.3.3 Image Encryption Flow Chart	34
CHAPTER FOUR	
Interface Design	36
Open File	36
Save File Button	37
Encrypt/Decrypt Button	37
Exit Button	37
Labels	37
4.2 Result	38
CHAPTER FIVE	
CONCLUSION	39
5.1 Introduction	39
5.2 Contributions to Knowledge	39
5.3 Limitations	39
5.4 Future Works	40
5.5 Critical Appraisal	40
REFERENCES	41

LIST OF FIGURES

Title	Page
General Block Based Diagram for Image Encryption	12
Original Image to be Encrypted	15
Image in Encryption Form	15
The Decrypted Image	15
Lossy Image Compression	21
Basic DCT vector quantization process table	27
Sequential movement for M by N block	28
Image Capture Module	32
Image Encryption Module for Image Encryptor	33
Flowchart Diagram illustrating the process of the Image Encryption System	36
The interface design of the proposed system	37
The Abstract Windows Toolkit File Chooser	38
Labels indicating system activities	39
Encrypted Result of the Image.	40
Image to Be Encrypted	40

LIST OF TABLES

Title	Page
Functional Requirement of the System	28
Non-Functional Requirement of the System	29

ACKNOWLEDGMENT

I would like to acknowledge the most Gracious and most Merciful, the Almighty God who saw me through in my Period of study.

Also, my profound gratitude to my supervisor Dr. Fagbuagun O. A. who in spite of his busy schedules create time to supervise and guide me in the course of this project.

Furthermore, my profound gratitude goes to my Parents, and siblings who have contributed morally, financially and expressed their love to me towards the successful completion of my study. To my coursemates, Victor (Akolime, a friend turned brother), Joy (my project partner and partner in crime), Godis Samuel & Bamic (thanks for being my backups), Seyi (sisto), Jude, Caleb and others, you guys are the best. I have really learnt a lot from you. See you at the top.

To entire members and executives of CACCF, thanks for the privilege to be part of you. I appreciate your love, obedience, and prayers. I love you all.

To the entire honorable of the NASSSRC and the entire exceutives of NASSRC 2016/2017 session, you all have been wonderful through the thin and tick.

To my homies and niggas, Atinuke, Oluwafunmilayo (Woman of God), Michael (Maximum Proprnsity to Talk), Damilola, Mary. You have all been my strength, may God keep us all through the journey.

Finally, I wish to acknowledge the leadership and staffs of Hephzibah Computer Engineers LTD for the opportunity and training given to me and all my colleagues who were instrumental to the successful completion of this project.

May God bless you and keep you.

х