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Abstract 
 

 
The dynamic behaviour of a simply supported rectangular plate is studied. This 
research work is based on the theory of the orthotropic plate simply supported 
on two sides and free on  two other sides.  The plate is excited by a moving load 
while the dynamic response of the structure was obtained using the classical 
double Fourier series expansion technique, which satisfies the boundary 
conditions at the four edges. In the absence of the external excitation, the 
vibration yields free frequencies, other wise, forced frequency is produced. The 
results obtained from the numerical example are in agreement with the ones in 
the existing literatures. In addition, the effects of variations in flexural rigidity 
and that of the frequencies of vibrations are also presented. 
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1.0 Introduction 
 

       Over the years, the deflection of rectangular thin plates  clamped at four edges under the influence of uniformly 
distributed loads is a problem that has provoked researches and scientific investigations by numerous researchers because of 
its technical importance. A plate is called thin if its thickness is at least one order of magnitude smaller than its span. This 
problem has received more attention from different researchers such as the mathematicians, the engineers, the physicists, and 
so on, applying various methods of solutions ranging from analytical to numerical solutions [1]-[9].   
          Some of the aforementioned Scholars used single cosine series and the superposition method as a generalization of 
Hencky’s solution [1]. The problem of bending of a rectangular plate with two opposite edges simply supported was treated 
by Hutchinson [6] and obtained the deflections for uniformly loaded rectangular plates.      In 1985, Burgess and Mahajerin 
[10] investigated a numerical method for laterally loaded thin plates. The problems and remedy for the Ritz method in 
determining stress resultants of corner supported rectangular plates was treated by Wang et al [11], and the solution of 
clamped rectangular plate problems was credited to Taylor and Govindjee [12].  
         However, the accuracy of the analytic solutions obtained in the literature varies. Those for simply supported plates are 
exact while others are approximate. Wang et al suggested approximate methods which were discovered to be inefficient due 
to loss of accuracy [13].  Further study and analysis of rectangular plates with fixed edges under the influence of the uniform 
load was credited to Imrak and Gerdemmeli [14]. They found the exact solution for the deflection of a clamped rectangular 
Plate under uniform load using trigonometric and hyperbolic series. 
       The detailed analyses of the deflections of   clamped rectangular plates are carried out in this paper. A solution of the 
governing differential equation describing the deflection of a thin rectangular plate using classical double cosine series is 
presented. From the model developed, the associated expressions for the bending moments were obtained.  Finally, a 
numerical example is presented. The results obtained are in good agreement with the existing ones in literature [14]. In 
addition, the effects of the variations in the flexural rigidity on the deflections were also presented.   
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2.0         Fundamental Equations of a Rectangular Plate Element  
 
2.1   Equilibrium of the plate element  
Assuming that the plate is subjected to lateral forces only from the fundamental equilibrium equations the following can be 
used; 

00,0 2 == ∑∑∑ PMM yx        
thus the external load 

2P  is called by 
xQ and yQ transverse shear forces and by xM and yM bending moments.  The 

significant deviation from the two dimensional grid-works action is the presence of the twisting moments  xyM and yxM . 

From figure (1), if the sum of the moment of all forces around the y axes is zero, this gives; 
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After simplification, we neglect the term containing dyx
x
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In a similar manner the sum of the moments around the x axes gives 
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The summation of all forces in the z direction yields third equilibrium equation. 
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Figure 1 : A parallelepiped cut out of the plate 
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which after division by dxdy gives 
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Substituting equations (2.2) and (2.3) into (2.4) and observing  

yxxy MM = we obtain 
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The bending and twisting moments in equation (2.5) depend on the strains and the strains are functions of the displacement 
components ),,( wvu .  The next step, is to seek the relations between the internal moments and displacement components. 

 
2.2        Relation Between Stress, Strain And Displacement 
 
The assumption that the material is elastic permits the use of the two-dimensional Hooke’s law 

yVxEx δεδ +=         (2.6) 

xVyEy δεδ +=         (2.7) 

which relates stress and strain in a plate element.  Substituting (2.2) into (2.6), we obtain 
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In similar manner; 
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In figure (1), the torsion moments xyM and yxM  produce in plane shear stresses hxy and hyx which are related to the 

shear  by the pertinent Hooke’s relationship.  Using assumptions (5) and (6); 
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By putting (2.10) into the above expression, we obtain; 
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also, the strain due to normal stresses in the y direction is given by  
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The curvature changes in the deflection middle surface are defined by 
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whereK represent the warping of the plate 
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 2.3          Internal Forces components 
 
The stress component xδ and yδ produced bending produce moments in the plate element in a manner similar to that in 

elementary beam theory, thus by integration of the normal stress components, the bending moments acting on the plate 
element are obtained, 

xzdzMx
h

h δ∫
−

−= 2

2

         (2.15) 
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Similarly, the twisting moments produced by the shear stresses  
tyxtxy ==Τ can be calculated from: 
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but ,nxyxxy τττ == therefore, MyxMxy = .  If we substitute equation (2.12) and (2.13) into (2.8) and (2.9).  The normal 

stresses xδ and xδ  are expressed in terms of the lateral deflection W.  Thus we obtain; 
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If we integrate equation (2.16) after the substitution of the equation (2.17) and (2.18) for xδ and gives 
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where   
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3
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represents the bending or flexural rigidity of the plate in the same manner 
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The substitution of equation (2.19), (2.20) and (2.22) into (2.5) yields the governing differential equation of the plate 
subjected to lateral load;  i.e 
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Where � is the deflections of the plate midsurface �� denotes lateral pressure load on the plate and � is the constant flexural 
rigidity terms of the material properties, which consists of the Young’s modulus of the material � and Poisson’s ratio � and  
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the plate thickness �. Thus, the governing equations expresses the relationship between the rectangular plate, lateral load and 
it’s deflection in the case of plate with small deflection.                                  

3.0 Solution Technique 
In general, there are four types of mathematical exact solutions available for plate problems namely, closed- form solution, 
superimposed solution of the biharmonic equation, double trigonometric series solution, and single series solution. 
However, in this paper, we shall be using double trigonometric series solution to solve the governing equation of a plate. 
We solve the governing equations, 
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Subject to the boundary conditions of rectangular plate 
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If the deflection of the clamped rectangular plates is expressed by double cosine series  
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where mnW  and mnP are unknown coefficients which can be derived from equation (3.2) while zP is a lateral load.       

.

 

    using equations (3.4) and (3.5) in equation (3.2),  we obtain 
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Putting mnW  into equation (3.5), we obtain the analytical solution for the deflection   of the plate which is represented as 
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4.0            Solution of the Moments 
The solution of the moment is obtained by substituting equation (3.4) into (2.19 )  
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    for some specific value of m and .n                                                                                                                               

5.0 Illustrative Example 

In order to demonstrate the application of the method , let us examine a simply supported rectangular plate Subjected to a 

uniformly distributed load, given that mnmm PP 2
08 π= and nm, are positive  odd integers ....5,3,1=m and ...5,3,1=n  

In the first step, the uniformly distributed lateral load is expanded into double Cosine Series 
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substituting for mmP in zP , we have 
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For deflection 
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                          Fig 2: Effect of increasing in flexural rigidity on the deflection 
  
6.0   Conclusion 
 
The solution of a clamped rectangular plate using classical double Fourier series expansion technique has been considered in 
this paper. We obtained the analytical solution of the problem applying the above method, which satisfies the boundary 
conditions at the four edges. The solution contains three different terms which includes the case of a strip and the influences 
of the edges. The results obtained from the numerical example are in agreement with the ones presented in [11-14]. In 
addition, the effects of variations in flexural rigidity on the deflection are also presented 
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