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ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic progressive disease that has continued to be a

global heath and economic burden. Acarbose is an antidiabetic drug, which acts by inhibiting

alpha amylase and alpha glucosidase; while gallic acid is a simple phenolic acid that is

widespread in plant foods and beverages such as tea and wine.This study therefore, sought to

investigate the influence of gallic acid on α-amylase and α-glucosidase inhibitory and antioxidant

properties of acarbose (in vitro). Aqueous solution of acarbose and gallic acid were prepared to a

final concentration of 25µM each. Thereafter, mixtures of the samples (50% acarbose + 50%

gallic acid; 75% acarbose + 25% gallic acid; 25% acarbose + 75% gallic acid) were prepared.

The results showed that the combination of 50% acarbose and 50% gallic acid showed the

highest α-glucosidase inhibitory effect, while 75% acarbose + 25% gallic acid showed highest α-

amylase inhibitory effect. Furthermore, all the samples caused the inhibition of Fe2+-induced

lipid peroxidation (in vitro) in rat pancreatic tissue homogenate, with the combination of 50%

acarbose and 50% gallic acid causing the highest reduction in the malondialdehyde content. In

addition, all the samples showed antioxidant properties (ferric reducing property, 2, 2'-azino-bis

(-3-ethylbenzthiazoline-6-sulphonate (ABTS*) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH)

radicals scavenging abilities, and Fe2+ chelating ability). Therefore, the combinations of gallic

acid with acarbose could be employed in the management of T2DM with the comparative

advantage of possible reduction of the side effects of acarbose; nevertheless the combination of

50% acarbose and 50% gallic acid seems the best combinatory therapy for the management of

type 2 diabetes mellitus.
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CHAPTER ONE

1.0 INTRODUCTION

Diabetes Mellitus (DM) commonly referred to as diabetes is a group of metabolic

diseases characterized by hyperglycemia (High blood sugar levels over a prolonged period),

either because the pancreas does not produce enough insulin, or because the cells do not respond

to the insulin that is produced (David and Gardner, 2011). The main symptoms of high blood

sugar include polyuria (frequent urination), polydipsia (increased thirst) and polyphagia

(increased hunger). If left untreated, this chronic disease can cause many complications (Cooke

and Plotnick, 2008).

Type 2 diabetes is the most common form of diabetes (Shi and Hu 2014); it is

characterized by insulin resistance, which may be combined with relatively reduced insulin

secretion (David and Gardener, 2011), leading to hyperglycemia and ultimately malfunctioning

of the pancreatic β-cells. Prolonged hyperglycemia results in increased generation of reactive

oxygen species (ROS) and alteration of endogenous antioxidants (Ohkuwa et al., 1995).

Oxidative stress resulting from the hyperglycemic condition in Type 2 diabetes has been

implicated in the impairment of the pancreatic β-cells and diabetes complications such as

diabetes nephropathy (damage to the kidney) (Shukla et al., 2003), diabetes retinopathy (damage

to the eye) (Bearse et al., 2004; Hove et., 2004) and diabetes neuropathy (damage to the nerves

of the body) (Seki et al., 2004).

A practical approach to reducing the postprandial hyperglycemia is to retard the

absorption of carbohydrates after food intake (Oboh and Ademiluyi, 2013). This could be

achieved through the inhibition of α-amylase and α-glucosidase present in the gastrointestinal
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tract (shim et al., 2003). Inhibitors of these enzymes slow down carbohydrate digestion time,

causing a reduction in the rate of glucose absorption and consequently blunting the postprandial

plasma glucose rise (Rhabasa- Lhoret and Chiasson, 2004). The dietary saccharides are first

broken down to monosaccharides by certain gastrointestinal enzymes, since only

monosaccharides can be absorbed from the intestinal lumen. Polysaccharides are hydrolyzed to

oligosaccharides and disaccharides by α-amylase and intestinal α- glucosidase further hydrolyzes

it to glucose before being absorbed into the intestinal epithelium entering the blood circulation

(Oboh et al., 2011).

Several reports have been published on established enzyme (α-glucosidase and α-

amylase) inhibitors such as Acarbose, Miglitol, voglibose, nojirimycin and 1- deoxynojirimycin

and their favorable effects on blood glucose levels after food uptake (Kim et al., 2005). Enzyme

inhibitors may also act as effective anti-obesity agents (Kotowaroo, et al., 2006). This could be

due to inhibition of saccharide assimilation, by inhibiting starch breakdown (Oboh et al., 2010).

The reduced amount of amylase available for the breakdown enables complex saccharides to

have a better chance for travelling through the gastrointestinal tract (GIT) without being

assimilated, which are eventually excreted from the body instead of being converted into storage

fat (Oboh et al., 2010).

Acarbose is an oral alpha-glucosidase and alpha amylase inhibitor for use in the

management of Type 2 diabetes mellitus (Wang et al., 2014). It is chemically known as O-4,6-

dideoxy-4-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexen-1-yl]amino]-α-D-

glucopyranosyl-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucose (Bayer Healthcare

Pharmaceuticals, 2011). The antihyperglcemic action of acarbose results from a competitive,

reversible inhibition of pancreatic alpha amylase and a membrane bound intestinal alpha
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glucoside hydrolase enzyme. Acarbose is shown to reduce and slow down the intestinal

absorption of glucose, which subsequently minimize the postprandial rise of blood glucose and

insulin concentration (Wang et al., 2014). It was first extracted from the culture broths of

actinomycetes by Puls and his colleagues in the 1970s, and was applied in clinical studies for

more than 10 years (Coniff and Krol, 1997; Scheen, 1998; Junger et al., 2000). It reversibly

inhibits alpha-glycosidases that exist in the brush-border of the small intestinal mucosa (Clissold

and Edwards, 1988). Acarbose does not cause hypoglycemia and its minor gastrointestinal side

effects can be prevented by gradual dosage increments (Wang et al., 2014).

In recent years, there has been an increased interest in the application of antioxidants to

medical treatment, as information is available linking the development of human diseases to

oxidative stress (Giustarini et al., 2009). Natural foods are known to contain natural antioxidants

that can scavenge free radicals. Small molecule dietary antioxidants, such as vitamin C, vitamin

E and carotenoids have procreated particular interest as defenses against degenerative diseases

(Kohlmier and Hastings, 1995; Stampfer and Rimm, 1998). However, some studies have

indicated that phenolic acids are considerably more potent antioxidants than vitamin C and

vitamin E (Vinson et al., 1995; Cao et al., 1997). Phenolic compounds form a substantial part of

plant foods, most of them have shown antioxidant properties both in in vitro and in vivo studies

(Rice- Evans et al., 1996).

Gallic acid is a ubiquitous natural product with various industrial applications including

ink dyes, tanning products, and paper (Eslami et al., 2010). Recent studies have documented that

gallic acid and its esters [e.g., (-)-epi-gallocatechin-3-gallate] exert antioxidant, anticancer,

antiviral, and many other biological effects (Sohi et al., 2003; Tachibana et al., 2004;

Sameermahmood et al., 2010).
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1.1 JUSTIFICATION

Acarbose is an established antidiabetic drug that inhibits α- glucosidase and α- amylase

(key enzymes relevant to type 2 diabetes) activities, but with well reported deleterious side

effects. Gallic acid is a phenolic acid which is ubiquitous in many food/ natural sources; it can be

classified as one of the dietary antioxidants. Consequently, this aims to investigate the effect of

gallic acid on the enzyme (α- glucosidase and α- amylase) inhibitory and antioxidant properties

of acarbose in vitro.

1.2 OBJECTIVES

The specific objectives of this project are to:

 Evaluate the effect of gallic acid on the in vitro inhibitory effect of acarbose on α-

glucosidase and α- amylase

 Evaluate the effect of gallic acid on antioxidant properties of acarbose.
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CHAPTER TWO

2 LITERATURE REVIEW

2.1 DIABETES MELLLITUS

Diabetes is a group of metabolic diseases characterized by hyperglycemia resulting from

defects in insulin secretion, insulin action, or both. The chronic hyperglycemia of diabetes is

associated with long-term damage, dysfunction, and failure of different organs, especially the

eyes, kidneys, nerves, heart, and blood vessels (Goldenberg and Punthakee, 2013). Several

pathogenic processes are involved in the development of diabetes, these ranges from

autoimmune destruction of the β-cells of the pancreas with consequent insulin deficiency to

abnormalities that result in resistance to insulin action. The basis of the abnormalities in

carbohydrate, fat, and protein metabolism in diabetes is deficient action of insulin on target

tissues (Diabetes care, 2002). Deficient insulin action results from inadequate insulin secretion

and/or diminished tissue responses to insulin at one or more points in the complex pathways of

hormone action. Impairment of insulin secretion and defects in insulin action frequently co-exist

in the same patient, and it is often unclear which abnormality, if either alone, is the primary

cause of the hyperglycemia.

2.1.1 PATHOPHYSIOLOGY OF DIABETES MELLITUS

The uptake of glucose from the blood into most cells of the body, especially liver,

muscle, and adipose tissue is regulated by insulin. Therefore, deficiency of insulin or the

insensitivity of its receptors plays a central role in all forms of diabetes mellitus (American

Diabetes Association, 1997).
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The body obtains glucose from three main sources: the intestinal absorption of food, the

breakdown of glycogen, the storage form of glucose found in the liver and gluconeogenesis (the

generation of glucose from non-carbohydrate substrates in the body) (David and Gardner, 2011).

Insulin functions in balancing glucose levels in the body. Insulin can inhibit the breakdown of

glycogen or the process of gluconeogenesis, it can stimulate the transport of glucose into fat and

muscle cells, and it can stimulate the storage of glucose in the form of glycogen (David and

Gardner, 2011).

Insulin is released into the blood by beta cells (β-cells), found in the islets of Langerhans

in the pancreas, in response to rising levels of blood glucose, typically after eating. Insulin is

used by about two-thirds of the body's cells to absorb glucose from the blood for use as fuel, for

conversion to other needed molecules, or for storage. Lower glucose levels result in decreased

insulin release from the beta cells and in the breakdown of glycogen to glucose. This process is

mainly controlled by the hormone glucagon, which acts in the opposite manner to insulin (Kim

and Barrett, 2012). If the amount of insulin available is insufficient, if cells respond poorly to the

effects of insulin (insulin insensitivity or insulin resistance), or if the insulin itself is defective,

then glucose will not be absorbed properly by the body cells that require it, and it will not be

stored appropriately in the liver and muscles. The net effect is persistently high levels of blood

glucose, poor protein synthesis, and other metabolic derangements, such as acidosis (David and

Gardner, 2011).

When the glucose concentration in the blood remains high over time, the kidneys will

reach a threshold of reabsorption, and glucose will be excreted in the urine (glycosuria) (Robert

and Murray, 2012). This increases the osmotic pressure of the urine and inhibits reabsorption of
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water by the kidney, resulting in increased urine production (polyuria) and increased fluid loss.

Lost blood volume will be replaced osmotically from water held in body cells and other body

compartments, causing dehydration and increased thirst (polydipsia) (David and Gardner, 2011).

2.1.2 CLASSIFICATION OF DIABETES MELLITUS

Assigning a type of diabetes to an individual often depends on the circumstances present

at the time of diagnosis, and many diabetic individuals do not easily fit into a single class. For

example, a person with gestational diabetes mellitus (GDM) may continue to be hyperglycemic

after delivery and may be determined to have, in fact, type 2 diabetes (William, 2008).

Alternatively, a person who acquires diabetes because of large doses of exogenous steroids may

become normoglycemic once the glucocorticoids are discontinued, but then may develop

diabetes many years later after recurrent episodes of pancreatitis (Williams, 2008). Another

example would be a person treated with thiazides who develops diabetes years later (Mayen et

al., 2002). Because thiazides in themselves seldom cause severe hyperglycemia, such individuals

probably have type 2 diabetes that is exacerbated by the drug (Mayen et al., 2002). Thus, for the

clinician and patient, it is less important to label the particular type of diabetes than it is to

understand the pathogenesis of the hyperglycemia and to treat it effectively (Diabetes care,

2002).

2.1.2.1 Type 1 diabetes (β-cell destruction, usually leading to absolute insulin deficiency)

Type 1 diabetes is also frequently referred as insulin-dependent, juvenile or childhood

diabetes characterized by inefficient or no insulin production by the pancreas. It is one of the

most common types of diabetes in children and is divided into two types: Type 1A and Type 1B

diabetes (Arora et al., 2013). In Type 1A (immune mediated diabetes), the immune cells are
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responsible for the destruction of the islet of Langerhans β cells (responsible for insulin

production) present in pancreas while the type 1B diabetes is caused by the inefficient production

of insulin by the islet of Langerhans β cells (Devendra et al., 2004). The resulting deficiency in

insulin also means a deficiency in the other co-secreted and co-located cell hormone, amylin

(Kruger et al., 1999). As a result, postprandial glucose concentrations rise due to lack of insulin-

stimulated glucose disappearance, poorly regulated hepatic glucose production, and increased or

abnormal gastric emptying following a meal. The cause for this diabetes is still unknown and is

usually cured by administration of external insulin (Devendra et al., 2004).

2.1.2.1 Type 2 diabetes mellitus

This form of diabetes, previously referred to as non-insulin-dependent diabetes, type 2

diabetes, or adult-onset diabetes, is a term used for individuals who have insulin resistance and

usually have relative (rather than absolute) insulin deficiency (Reaven et al., 1976; Olefsky et al.,

1982; DeFronzo et al., 1979; Turner et al., 1979). A marked postprandial increase in blood

glucose is the hallmark of diabetes, but is also observed in pre-diabetic individuals with impaired

glucose tolerance (DeFronzo et al., 1979). Individuals with both conditions lack the ability to

regulate the release of insulin, which prevents this postprandial increase in healthy people.

Therefore, a significant aspect of the pathogenesis of type 2 diabetes is an increased blood

glucose concentration, with maximum, but metabolically inadequate, stimulation of insulin

secretion (Williams, 2008). One reason for this is the reduced number of insulin-producing beta

cells in the pancreas (caused by an increased rate of apoptosis) which results in relative

dominance of secretion of glucagon, the insulin antagonist. Inadequate insulin secretion reduces

the glucose flow from blood into peripheral organs. Simultaneously, glucagon increases the

stimulation of gluconeogenesis in the liver, both fasting and postprandially between meals.
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Additionally, type 2 diabetics are insulin-resistant, which means that uptake of glucose

into the cells of the peripheral organs is continuously deteriorating. In the long term, the

continuously reducing number of beta cells and the decrease in peripheral glucose uptake causes

an increase in glucose concentrations, and glucose toxicity intensifies. Hyperglycemia initiates a

large number of regulatory processes which can exert harmful effects on the vascular system

(Martinez et al., 2005). Vessels are directly damaged, resulting in the increased morbidity and

mortality associated with diabetes (Nishikawa et al., 2000). The objective of any

pharmacological and non-pharmacological therapeutic measures must therefore be a reduction in

glucose toxicity, that is, in increased blood glucose concentrations (Scarlett et al., 1982; Firth et

al., 1986). The algorithms of national and international guidelines for the treatment of diabetes

are based on the principle that patients should be established on suitable oral therapies for the

reduction of blood glucose concentrations and glucose toxicity depending on their glycosylated

hemoglobin (HbA1c) concentrations (Samantha et al., 2008). These therapies should be extended

as required and ultimately be supplemented by insulin substitution to compensate for lack of

adapted insulin release (Wang, 2008).
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Figure 2.1: A diagram showing the pathogenesis of type 2 diabetes

Source: Wikipedia
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2.1.3 PREVALENCE AND INCIDENCE OF DIABETES MELLITUS

Diabetes was found to be present in humans even in 200 A.D. as described by a Greek

physician Arateus, who gave this disease its name (Arora et al, 2013). Although, it was present

since so many years, still it is not considered a threat until the 20th century. This disease is now

considered as a serious threat, because millions of people have died due to this. As stated by

world health organization (WHO) in November 2014, 347 million people worldwide are reported

to have different types of diabetes and there is a gradual increase in the number of patients. It

was observed that 2.8% world population was suffering from diabetes in 2000, which increased

to 6.8% in 2010 and is expected to further rise to 7.7% in 2030 (Wild et al, 2004; Shaw et al,

2010). WHO estimates that in 2012, approximately 1.5 million deaths were directly caused by

diabetes, and more than 80 percent of these deaths occurred in low- and middle-income areas. In

2012, 29.1 million Americans, or 9.3% of the population, had diabetes. Approximately 1.25

million American children and adults have type 1 diabetes.

In April 2014, the National Institutes of Health (NIH) reported that the percentage of

people with diabetes in the United States doubled since 1998. Nearly 1 in 10 adults have been

diagnosed with the condition, and fewer people are thought to be undiagnosed—perhaps due

to improved screening methods for diabetes. Globally, the five countries with the largest

numbers of people with diabetes are China, India, US, Russia and Brazil, according to

International Diabetes Federation estimates in 2011. The prevalence of type 2 diabetes mellitus

among children in the UK is rising. In September 2014, the National Institute of Diabetes and

Digestive and Kidney Diseases of the National Institutes of Health issued a report stating that

factors that increase diabetes incidence may differ between the genders. According to the report,

increased diabetes prevalence in women in the United States between 1976 and 2010 may be
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attributed to higher body mass index (BMI) in women, an aging population, and changes in race

and ethnicity. In men, increased diabetes prevalence may be associated with higher rates of

overweight/obesity (indicated by higher BMI), improved survival times compared to women

with the condition, and changes in physical activity, sleep, and other factors (World Health

Organization, 2013).

Figure 2.2: Map showing the prevalence of diabetes mellitus

Source: International Diabetes Federation, The wall Street Jouurnal (2014)
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2.1.4 KEY ENZYMES LINKED TO TYPE-2 DIABETES MELLITUS

Starch is the major dietary carbohydrate source of glucose for the human, and the rate and

extent of starch digestion is associated with glycemia-related problems such as diabetes and

other metabolic syndrome conditions. To generate dietary glucose from starchy foods, salivary

and pancreatic α-amylase and four small intestine mucosal α-glucosidase subunits are employed

in the human body (Dhital et al., 2013). Pancreatic alpha amylase is a key enzyme in the

digestive system and catalyses the initial step in hydrolysis of starch to a mixture of

oligoglucans. These are then acted on by alpha glucosidase and further degraded to glucose

which on absorption enters in to blood stream (Sabu and Kuttan 2009).

2.1.5 ALPHA- GLUCOSIDASE INHIBITORS

Alpha-glucosidase (EC3.2.1.20, maltase, glucoinvertase, glucosidosucrase, maltase-

glucoamylase, alpha-glucopyranosidase, glucosidoinvertase, alpha-D-glucosidase, alpha-

glucoside hydrolase, alpha-1,4-glucosidase, alpha-D-glucoside glucohydrolase) is a glucosidase

located in the brush border of the small intestine that acts upon 1,4-alpha bonds (Bruni et al,

1970; Flanagan and Forstner, 1978; Larner, 1960; Sivikami and Radhakrishnan, 1973; Sorensen,

1982). The membrane-bound intestinal alpha-glucosidases hydrolyze oligosaccharides,

trisaccharides, and disaccharides to glucose and other monosaccharides in the small intestine.

Alpha-glucosidase inhibitors are saccharides that act as competitive inhibitors of enzymes

(especially alpha glucosidase) needed to digest carbohydrates. Currently, three (3) drugs are

therapeutically used as anti-glucosidases: acarbose, miglitol and voglibose (DeFronzo, 1999).

These drugs have greater glycemic control over hyperglycemia in diabetes mellitus type 2,

particularly with regard to postprandial hyperglycemia, by interfering with the rate of digestion
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of dietary carbohydrate. Therefore, less glucose is absorbed because the carbohydrates are not

broken down into glucose molecules. In diabetic patients, the short-term effect of these drugs

therapies is to decrease current blood glucose levels: the long-term effect is a small reduction in

glycosylated hemoglobin (glycohemoglobin or hemoglobin A1C) level (Samantha et al., 2008).

2.1.6 ALPHA AMYLASE INHIBITORS

α-Amylase (α- 1,4- glucan-4-glucanohydrolase) is an endo-acting enzyme EC3.2.1.1 that

hydrolyses alpha bonds of α-(1,4) glycosidic linkages of polysaccharides, such as starch and

glycogen, yielding glucose and maltose (Maureen, 2000). It is the major form of amylase found

in humans and other mammals (Voet and Voet, 2005). It is also present in seeds containing

starch as a food reserve, and is secreted by many fungi. α- amylase inhibitors such as acarbose,

miglitol, voglibose, nojirimycin and 1- deoxynojirimycin, also known as carbo- blockers (Kim et

al., 2000) prevent degradation of complex dietary carbohydrates to oligosaccharides and

dissacharides. Theses inhibitors are indirectly helpful in weight loss due to ability to prevent

sugar assimilation, through inhibition of starch hydrolysis (Kim et al., 2000).

2.2 FREE RADICALS AND OXIDATIVE STRESS

Free radicals are continuously produced by the body's normal use of oxygen (Tiwari,

2004). Hence, free radicals can be defined as molecules or molecular fragments containing one

or more unpaired electrons in atomic or molecular orbitals (Halliwell and Gutteridge, 1999).

Oxygen is an element indispensable for life. When cells use oxygen to generate energy, free

radicals are produced by the mitochondria. These by-products are generally reactive oxygen

species (ROS) as well as reactive nitrogen species (RNS) that result from the cellular redox
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process. The free radicals have a special affinity for lipids, proteins, carbohydrates and nucleic

acids (Velavan, 2011).

Reactive oxygen species can be classified into oxygen-centered radicals and oxygen-

centered non radicals. Oxygen-centered radicals are superoxide anion (·O2
–), hydroxyl radical

(·OH), alkoxyl radical (RO·), and peroxyl radical (ROO·). Other reactive species are nitrogen

species such as nitric oxide (NO·), nitric dioxide (NO2·), and peroxynitrite (OONO–). Oxygen-

centered non-radicals are hydrogen peroxide (H2O2) and singlet oxygen (O2), hypochlorous acid

and ozone (Halliwell et al, 1995; Simon et al, 2005).

It has been established that ROS can be both harmful and beneficial in biological systems

depending on the environment and concentration (Glade, 2003; Lopaczynski and Zeisel, 2011).

Beneficial effects of ROS involve, for example, the physiological roles in cellular responses to

noxia such as defense against infectious agents, and in the function of a number of cellular

signaling systems and gene expression. In contrast, at high concentrations, ROS can mediate

damage to cell structures, including lipids and membranes, proteins and nucleic acids; this

damage is often referred as “oxidative stress” (Poli et al., 2004). Oxidative stress is defined as an

imbalance between production of free radicals and reactive metabolites, so-called oxidants or

reactive oxygen species (Rahman et al., 2012). This imbalance leads to damage of important

biomolecules and cells, with potential impact on the whole organism (Durackova, 2010).

2.3 HYPERGLYCAEMIA AND OXIDATIVE STRESS

Increased oxidative stress, which contributes to the pathogenesis of diabetes and its

complications, is the consequence of either enhanced ROS production or attenuated ROS

scavenging capacity (Maria et al., 2007). Several mechanisms, including auto-oxidative
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glycosylation, formation of advanced glycosylated end products (AGEs), and increased polyol

pathway activity contribute to increased oxidative stress (Kaneto et al., 1996). Free radicals

generated in glucose oxidation, is believed to be the main source of free radicals. Glucose, in its

enediol from, is oxidatized in a transition-metal-dependent reaction to an enediol radical anion

that is converted into reactive ketoaldehydes and to superoxide anion radicals (Araki and

Nishikawa, 2010). The superoxide anion radicals undergo dismutation to hydrogen peroxide,

which if not degraded by catalase or glutathione peroxidase, and in the presence of transitional

metals, can lead to production of extremely reactive hydroxyl radicals (Jiang et al.,, 1990).

Superoxide anion radicals can also react with nitric oxide to form reactive peroxynitrite radicals.

Hyperglycemia is also found to promote lipid peroxidation of low density lipoprotein (LDL) by a

superoxide-dependent pathway to generate free radicals (Tsai et al., 1994).

Another important source of free radicals in diabetes is interaction of glucose with

proteins to lead to protein glycation. Glycation involves the condensation of glucose with the ε-

amino group of lysine, the α-amino group of an N-terminal amino acid or the amines of nucleic

acids, which will result in the formation of advanced glycosylated end products (AGEs) (Uribarri

et al., 2010). The increased availability of glucose in diabetes mellitus induces enhanced

production of AGEs. This process has been described as glucosylation, and is probably the major

source of increased generation of ROS in diabetes patients (Wolff, 1993). AGEs are believed to

be involved in the genesis of many of the irreversible complications of diabetes, including

expanded extracellular matrix, cellular hypertrophy, hyperplasia, and vascular complication

(Munch et al., 1997). The formation of glycoxidation products is not only the result of glucose-

induced oxidative stress. Fructose, which is increased as a consequence of activation of the

polyol pathway, leads to the formation of AGE precursors: methylglyoxal and 3-deoxyglucosone
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(Takagi et al., 1995). These AGEs, via their receptors (RAGEs), inactivate enzymes and alter

their structures and functions, promote free radicals formation, and quench and block anti-

proliferative effects of nitric oxide. By increasing intracellular oxidative stress, AGEs activate

the transcription factor NF-κB, thus promoting up-regulation of various NF-κB controlled target

genes (Mohamed et al., 1999). NF-κB enhances production of nitric oxide, which is believed to

be a mediator of islet β-cell damage.

In addition, hyperglycaemia leads to glycation of antioxidant enzymes, which could alter

the structure and function of antioxidant enzymes such that they are unable to detoxify free

radicals, exacerbating oxidative stress in diabetes. Therefore, the process of glucose oxidation

might be responsible not only for increased ROS products but also for decrease availability of

antioxidant enzymes (Li et al., 2008).

2.4 LIPID PEROXIDATION

Lipid peroxide, a compound formed by chain reaction, involves the non-radical lipids

being converted to radicals by species such as O.
2, OH., NO. and other reactive oxygen species

(ROS). The hydrogen groups attached to the lipids have a proton and an electron, and once the

hydrogen atoms are removed by free radicals, it leaves behind an unpaired electron in the lipids

(Niki, 2009). This in turn leads to a chain reaction, thus reacting with other biomolecules

(Krajcovicová-Kudlácková et al., 2004; Niki, 2009). The reaction is shown below:

L-H +OH. H2O +  L.

This lipid peroxidation results in the chain reaction and damages the various other

molecules, finally leading to the cell damage (Gutteridge, 1995). Upon lipid peroxidation, a

variety of products are formed depending on the type of lipids and the location of the electron.
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These products are malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), lipid hydroperoxide

(LOOH), isoprostanes, conjugated dienes, lipid-DNA adduct, lipid-protein adduct, lipofuscin

pigments, exhaled gases (Devasagayam et al., 2003).

The lipid peroxidation during diabetes is generally caused by both the enzymatic methods

as well as the non- enzymatic methods. Diabetes is linked with the high blood glucose level and

the high lipid content of the adipose tissues during obesity. This leads to the increase in the size

of adipocytes and thus leading to the generation of phospholipase A2. The activation of

phospholipase A2 finally leads to the process of the lipid peroxidation (Spiteller, 2003). The non-

enzymatic process is usually caused by the mitochondrion. It is well known that mitochondrion

is responsible for the transformation of oxygen into water. This involves the conversion of

oxygen into superoxide anion by the transfer of an electron. These superoxide radicals are

sometimes able to escape and react with water, thus generating HO2
., which is converted to H2O2

and O2. The H2O2 thus formed is a radical and reacts with Fe2+ ion to form an OH. radical. The

OH. radical removes a hydrogen atom from CH2 group and initiates the chain reaction leading to

the process of lipid peroxidation (Spiteller, 2003). The lipid peroxidation is generally linked with

the reduced tolerance among the T cells for the self-molecules due to the general processes,

infections and diseases like diabetes (Wuttge, 1999).

The chain reaction which continuously supplies free radicals that intimate further peroxidation

occurs in three steps: initiation, propagation and termination (Marnette, 1999).

Initiation

This step involves the production of fatty acid radicals. The initiators in living cells are

most notably reactive oxygen species (ROS), such as OH· and HOO·, which combines with a
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hydrogen atom to make water and a fatty acid radical or lipid peroxide radical ROO●. This

peroxidation process is inhibited by tocopherols, mannitol and formate.

RH → R*+ H2O

ROOH → ROO* + H+

Propagation

Since the fatty acid radical generated is not a very stable molecule, it reacts readily with

molecular oxygen, thereby creating a peroxyl-fatty acid radical. This radical is also an unstable

species that reacts with another free fatty acid, producing a different fatty acid radical and a lipid

peroxide, or a cyclic peroxide if it had reacted with itself. This cycle continues, as the new fatty

acid radical reacts in the same way.

R* + O2 → ROO*

ROO* + RH → ROOH + R

Termination

The term "chain reaction mechanism" simply refers to a process whereby, a radical reacts with a

non-radical to produce another radical. The radical reaction stops when two radicals react and

produce a non-radical species. This happens only when the concentration of radical species is

high enough thereby causing collision of two radicals, enabling lipid peroxidation.

ROO + ROO → ROOR + O2

R + R → R−R

ROO + R → ROOR
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Figure 2.3: Mechanism of lipid peroxidation

Source: Wikipedia
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2.5 ANTIOXIDANTS

Antioxidant refers to any molecule capable of stabilizing or deactivating free radicals

before they attack cells (Eboh, 2014). Humans have evolved highly complex antioxidant systems

(enzymatic and nonenzymatic), which work synergistically, and in combination with each other

to protect the cells and organ systems of the body against free radical damage. The antioxidants

can be endogenous or obtained exogenously e.g., as a part of a diet or as dietary supplements.

Some dietary compounds that do not neutralize free radicals, but enhance endogenous activity

may also be classified as antioxidants.

An ideal antioxidant should be readily absorbed and quench free radicals, and chelate

redox metals at physiologically relevant levels. It should also work in both aqueous and/or

membrane domains and effect gene expression in a positive way. Endogenous antioxidants play

a crucial role in maintaining optimal cellular functions and thus systemic health and well- being.

However, under conditions which promote oxidative stress, endogenous antioxidants may not be

sufficient and dietary antioxidants may be required to maintain optimal cellular functions.

The most efficient enzymatic antioxidants involve glutathione peroxidase, catalase and

superoxide dismutase (Mates et al., 1999). Non-enzymatic antioxidants include Vitamin E and C,

thiol antioxidants (glutathione, thioredoxin and lipoic acid), melatonin, carotenoids, natural

flavonoids, and other compounds (McCall, 2000). Some antioxidants can interact with other

antioxidants regenerating their original properties; this mechanism is often referred to as the

“antioxidant network” (Sies, 2005). There is growing evidence to support a link between

increased levels of ROS and disturbed activities of enzymatic and non-enzymatic antioxidants in

diseases associated with aging.
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2.5.1 ENDOGENUOS ANTIOXIDANTS

Endogenous antioxidants include various antioxidant defenses in aerobic cells. They vary

according to organelles and cell function; they help in maintaining the normal redox balance of a

cell ensuring that ROS generation is transitory. The most important of these systems are

glutathione, catalase and superoxide dismutase (SODs). Reducing glutathione (GSH), a

tripeptide with a free thiol group, is a major antioxidant in human tissues. GSH is involved in

important cell functions including vitamin C metabolism, chelation of copper ions, and the bio

transformation of foreign substances and intermediate oxygen metabolite. An adequate intra-

cellular supply is essential for cell survival: reduction of cell concentration usually indicate a

pathological state preceding apoptosis in viral infections (Sen, 1999; Sen, 2000). GSH is

synthesized primarily in the liver and it is the main intra cellular defense against ROS, free

radicals, and electrophilic xenobiotics in the hepatocytes.

Availability of cysteine, the unstable precursor of GSH synthesis in most cells, is a

critical determinant of cellular GSH levels (Sen, 1999; Sen, 2000). GSH provides reducing

equivalents for the glutathione peroxidase (GPX) catalyzed reduction of hydrogen peroxide and

lipid hydro peroxides to water and the respective alcohol. During this process, GSH becomes

oxidized glutathione (GSSG). GSSG is then recycled to GSH through interaction with the

reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), catalyzed by

glutathione reductase (GR);

H2O2 + GSH → GSSG + H2O

GSSG + NADPH + H → 2GSH + NADPH+
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Catalase presents in the cytosol and mitochondrial matrix promotes conversion of hydrogen

peroxides to water and molecular oxygen:

2H2O2 → 2H2O + O2

Catalase also uses hydrogen peroxide to oxidize toxins including phenols, formic acid,

formaldehyde and alcohols:

H2O2 + RH2 → 2H2O + R

SODs catalyze transformation of superoxide anions to oxygen and hydrogen peroxide, protecting

cells against the toxic effect of oxygen metabolism.

2.5.2 DIETARY ANTIOXIDANTS

The term dietary antioxidants comprise a variety of structurally distinct compounds that

have reported to act as scavengers of either ROS or RNS (Hallliwell and Gutteridge, 2007).

Diets, such as fruits, vegetables, nuts and seeds provide a rich source of antioxidant vitamins,

and other phytochemicals with antioxidant characteristics, which are important exogenous

sources of compounds able to augment cellular responses to oxidative stress. The water soluble

antioxidant vitamin C has a high reducing power and able to quench a variety of ROS. Ascorbic

acid (Vitamin C), dietary antioxidant has 4 −OH groups that can donate hydrogen to an oxidizing

system. Due to the −OH groups on adjacent carbon atoms, vitamin C is able to chelate metal ions

(Fe++). It also scavenges free radicals, quenches O2
−, and acts as a reducing agent. At high levels

(>1000 mg/kg), vitamin C shifts the balance between ferrous (Fe2+) and ferric iron (Fe3+), acts as

an oxygen scavenger, and inhibits oxidation. However, at low levels (<100 mg/kg), it can

catalyze oxidation (in muscle tissue; Ahn et al., 2007; Yetella and Min 2008).



24

α-Tocopherol (vitamin E), a fat-soluble carotenoid is the major vitamin E compound in

plant leaves where it is located in the chloroplast envelope and thylakoid membranes in

proximity to phospholipids (Onibi et al., 2000). It deactivates photosynthesis-derived reactive

oxygen species (especially O2
−) and prevents the propagation of lipid peroxidation by scavenging

lipid peroxyl radicals in thylakoid membranes (Munn´e-Bosch, 2005). Trolox is a water-soluble

derivative of vitamin E. Structurally related lipid-soluble antioxidants that differ in the number of

methyl groups (δ-tocopherol compared with α-tocopherol) have different free radical-scavenging

activities and different surface activities (Chaiyasit et al., 2005).

Experimental dietary studies are supportive as to the beneficial effects of dietary plants

rich in antioxidants. Yeum et al., (2009) reported synergistic effects between ascorbic acid and

α-tocopherol in protecting an in vitro biological model system. It may be that ascorbic acid

regenerates α-tocopherol after α-tocopherol donates Hydrogen to an oxidizing lipid (Brewer,

2011). α-Tocopherol can also inhibit oxidation of protein. According to Est´evez and Heinonen

(2010), α-tocopherol reduced formation of α-aminoadipic and γ-glutamic semialdehydes from

oxidized myofibrillar proteins. Dietary supplementation of α-tocopherol increases incorporation

of the antioxidant into the phospholipid membrane region where the polyunsaturated fatty acids

are located. Including α-tocopherol in livestock diets has been shown to have significant effects

on the antioxidative activities of their tissues and the stability of meat derived from them (Boler

et al., 2009; Lahucky et al., 2010).

Protein and amino acids are responsible for the synthesis of antioxidant enzymes. GSH

and Carnosine are the small peptides, nitrogenous metabolites like creatine and uric acid are the

direct scavengers of reactive metabolites (Rassaf et al., 2002). The oxidative stress is due to

increase level of tissue iron in protein deficient patient, in which iron-binding protein are
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deficient including transferrin, lactoferrin and ferritin. This iron overload exhibits the

cardiovascular injury. Similarly, high protein diet exhibit oxidative stress. Homocysteine

elevation exhibits endothelial superoxide anion in vasculature, increase inducible and

constitutive NOS synthesis, and stimulate ROS generation in polymorphonuclear leukocytes and

monocytic cells (Garcion et al., 1997; Gurujeyalakshmi et al., 2000).

Figure 2.4: The antioxidant pathway

Source: Wikipedia
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2.6 POLYPHENOLS

Polyphenols are secondary metabolites that plants produce in response to biotic and

abiotic stress (Cesoniene et al., 2009; Cushnie and Lamb, 2011). Dietary polyphenols have been

shown to play important roles in human health. High intake of fruits, vegetables and whole

grains, which are rich in polyphenols, has been linked to lowered risks of many chronic diseases

including cancer, cardiovascular disease, chronic inflammation and many degenerative diseases

(Milner, 1994; Duthie and Brown, 1994). Studies have revealed that many of these diseases are

related to oxidative stress from reactive oxygen and nitrogen species. Phytochemicals, especially

polyphenols, are the predominant contributor to the total antioxidant activities of fruits, rather

than vitamin C (Wang et al., 1996). Polyphenols have been found to be strong antioxidants that

can neutralize free radicals by donating an electron or hydrogen atom. Polyphenols suppress the

generation of free radicals, thus reducing the rate of oxidation by inhibiting the formation of or

deactivating the active species and precursors of free radicals. More frequently, they act as direct

radical scavengers of the lipid peroxidation chain reactions (chain breakers). Chain-breakers

donate an electron to the free radical, neutralizing the radicals and themselves becoming stable

(less reactive) radicals, thus stopping the chain reactions (Rice-Evans et al., 1996; Pietta, 2000;

Guo, 2009). In addition to radical scavenging, polyphenols are also known as metal chelators.

Polyphenols can induce antioxidant enzymes such as glutathione peroxidase, catalase and

superoxide dismutase that decompose hydroperoxides, hydrogen peroxide and superoxide

anions, respectively, and inhibit the expression of enzymes such as xanthine oxidase (Du et al.,

2007).

After intake, some polyphenols are directly absorbed through the stomach and the small

intestine (Brown et al., 2004; Eckel et al., 2005). After absorption, polyphenols undergo
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extensive biotransformation by enterocytes and liver, a necessary step aiming to increase

hydrophilicity therefore favoring urinary excretion. Sulfation, glucuronidation, methylation and

glycine-conjugation are the most common biotransformation reactions (Moco et al., 2012).

Importantly, liver may play a larger role in the metabolism of flavonoids absorbed in the small

intestine compared to metabolism of compounds taken up by colon (Heim et al., 2002).

Polyphenols are not able to saturate metabolic pathways similarly to drugs, thus hindering the

establishment of high plasma levels (Scalbert and Williamson, 2000). Absorption of flavonoids

may be influenced by dosage, vehicle of administration, prior diet, food matrix, gender and

differences in the gut microbial populations (Erlund et al., 2001; Heim et al., 2002). Recent

research strongly supports the concept that the consumption of fruits and plant-derived foods is

inversely correlated with type 2 diabetes prevalence and the occurrence of cardio metabolic

complications (Morimoto et al., 2012; Bauer et al., 2013; Eshak et al., 2013; Sabin et al.,

2012 and Chan et al., 2012). It has been suggested that 90% of type 2 diabetes cases could be

potentially prevented by lifestyle modifications (Willett, 2002), including increased physical

activity, weight loss and consuming a diet rich in plant-derived foods (e.g. whole grains, fruits

and vegetables) (Lindström et al., 2006).

Examples of polyphenolic natural antioxidants derived from plant sources include

vitamin E, flavonoids, cinnamic acid derivatives, curcumin, caffeine, catechins, gallic acid

derivatives, salicylic acid derivatives, chlorogenic acid, resveratrol, folate, anthocyanins and

tannins (Bors et al., 1996).
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2.7 GALLIC ACID

Gallic acid (GA), 3, 4, 5-trihydroxybenzoic acid, and its derivatives are biologically

active compounds which are widely present in plants (Kahkonen et al., 1999; Lee et al., 2000).

Gallic acid is a strong natural antioxidant (Aruoma et al., 1993; Heinonen et al., 1998; Khan et

al., 2001). It is able to scavenge hypochlorous acid at a rate sufficient to protect α – 1 —

antiproteinase against inactivation by this molecule. Gallic acid decreases the peroxidation of ox

brain phospholipids (Milic et al., 1998). Free radicals have been implicated in the etiology and

pathogenesis of numerous disease states including cardiovascular disease, cancer and diabetes

(Inoue et al., 1995; Sakagami et al., 1997; Aoki et al., 2001). Free radicals occur as a natural

consequence of cell metabolism. They are also produced as results of oxidative stress (Schmidt

et al., 1995; Koga et al., 1999; Terasaka et al., 2000). Antioxidant capacity of gallate esters

against hydroxyl, azide, and superoxide radicals has also been reported (Masaki et al., 1995;

Satoh et al., 1998; Bors and Michel, 1999; Pulido et al., 2000; Metelitza et al., 2001). Gallic acid

is widespread in plant foods and beverages such as tea and wine and was proven to be one of the

anticarcinogenic polyphenols present in green tea (Ho et al., 1992; Kerry and Abbey, 1997; Abu-

Amsha et al., 2001; Landrault et al., 2001). Antioxidants present in red wine have been shown to

have a protective role against oxidation of LDL in vitro (Arce et al., 1998). Gallic acid is a

strong chelating agent and forms complexes of high stability with iron (III) (Sroka et al., 1994;

Li et al., 2000). It has shown phytotoxity and antifungal activity against Fusarium semitectum, F.

fusiformis and Alternaria altternata (Dowd et al., 1997). Gallic acid is of great interest in

arteriosclerosis prevention (Abella and Chalas, 1977)
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Figure 2.5: Molecular structure of Gallic acid

Source: Mämmelä et al., 2000; Wang et al., 2003

2.8 ACARBOSE

Acarbose belongs to the group of noninsulinotropic oral antidiabetic agents. Because of

its unique mode of action, acarbose not only plays an essential and direct role in carbohydrate

uptake from food into the blood, but also has an indirect role in the optimization of glucose

metabolism over the whole day, as it contributes to the adaptation of insulin secretion (Rosak and

Mertes, 2012). To enable glucose uptake and absorption by the body and availability as an

energy source, intestinal cleavage of starch and oligosaccharides is necessary, because only

monosaccharides can be taken up into the blood. Oligosaccharides are cleaved into

monosaccharides by enzyme complexes called alpha- glucosidases, which are present in the

brush border membrane of the small intestine (Elsenhans and Caspary, 1987). Acarbose is

structurally similar to natural oligosaccharides, but has a 104 to 105 times higher affinity for

alpha-glucosidases (Rosak and Mertes, 2012). This means that these enzyme complexes are

competitively inhibited and that their availability to the oligosaccharides from dietary starch is

reduced. Thus, monosaccharide formation decreases and less insulin is required for further
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metabolisation, leading to a reduction of food-induced postprandial increases in blood glucose

and insulin (Bischoff, 1991; Puls, 1996). Therefore, the effect is not a classic reduction in blood

glucose by increased insulin secretion as a reaction to an increase in blood glucose, but a

reduction in blood glucose rise as an antihyperglycemic effect. Because reduced blood glucose

concentrations result in markedly lower stimulation of insulin synthesis and insulin secretion, the

hyperinsulinemia induced by insulin resistance is also decreased (Bischoff et al., 1995). Given

that acarbose acts in the intestine, it can be combined in long-term treatment with all other

antidiabetic agents to enhance its effect without potentiating adverse events.

Figure 2.6: Molecular structure of Acarbose

Source: Bischoff, 1991.
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CHAPTER THREE

3 MATERIALS AND METHODS

3.1 MATERIALS

3.1.1 Sample collection

The Acarbose was purchased from Glenmark Generics (Europe) pharmaceutical limited.

Gallic acid used was purchased from Sigma Al-drich Co. (St Louis, Missouri, USA).

3.1.2 Sample preparation

Acarbose and Gallic acid were dissolved in distilled water to a final concentration of

25μM. Thereafter, sample mixtures were prepared thus:

S1= 100% Acarbose (25μM)

S2= 100% Gallic acid (25μM)

S3 = 50% Acarbose + 50% Gallic acid

S4 = 75% Acarbose + 25% Gallic acid

S5 = 25% Acarbose + 75% Gallic acid

All samples were kept in the refrigerator at 40C for subsequent analysis.

3.1.3 Chemicals and Reagents

Chemical reagents such as Trolox® ( 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid),

DPPH (2, 2-diphenyl-1picrylhydrazyl), thiobarbituric acid (TBA), gallic acid, porcine pancreatic
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α-amylase and 1,10-phenanthroline were procured from Sigma Al-drich Co. (St Louis, Missouri,

USA). Trichloroacetic acid (TCA) was sourced from Sigma Al-drich, Chemie GmbH

(Steinheim, Germany), hydrogen peroxide, methanol, acetic acid, hydrochloric acid, aluminium

chloride, potassium acetate, sodium dodecyl sulphate,Iron (II) sulphate, potassium ferrycyanide

and ferric chloride were sourced from BDH Chemicals Ltd., (Poole, England). Ascorbic acid and

starch were products of Merck (Darmstadt, Germany). Except stated otherwise, all other

chemicals and reagents were of analytical grades and the water was glass distilled.

3.2 METHODS

3.2.1 Alpha glucosidase activity assay

Appropriate dilution of the sample (50 μl) and 100μl of α-glucosidase solution (EC

3.2.1.20; 1.0 U/ml) in 0.1M phosphate buffer (pH 6.9) was incubated at 25°C for 10 min.

Thereafter, 50μl of 5 mM pnitrophenyl- α-D-glucopyranoside solution in 0.1M phosphate buffer

(pH 6.9) was added. The mixtures were incubated at 25°C for 5 min the absorbance read at 405

nm in the spectrophotometer. The α-glucosidase inhibitory activity was expressed as percentage

inhibition (Apostolidis et al., 2007).

3.2.2 Alpha amylase activity assay

The aqueous sample dilution (500μl) and 500μl of 0.02M sodium phosphate buffer (pH

6.9 with 0.006M NaCl) containing 0.5 mg/ml Hog pancreatic α-amylase (EC 3.2.1.1) were

incubated at 25°C for 10 min. Thereafter, 500μl of 1% starch solution in 0.02M sodium

phosphate buffer (pH 6.9 with 0.006M NaCl) was added to each reaction mixture. The reaction

mixtures was incubated at 25°C for 10 min and stopped with 1.0ml of dinitrosalicylic acid

(DNSA) color reagent. Thereafter, the mixture was incubated in a boiling water bath for 5 min,
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and cooled to room temperature. The reaction mixture was then diluted by adding 10 ml of

distilled water, and absorbance measured at 540 nm. The reference samples included all other

reagents and the enzyme with the exception of the test sample. The percentage enzyme inhibitory

activity of the extract was subsequently calculated (Worthington, 1993).

3.2.3 Fe2+ chelation assay

The Fe2+ chelating ability of the samples was determined using the method of Minotti and

Aust (1987) as modification by Puntel et al. (2005). Freshly prepared 500μmol/l FeSO4 (150μl)

was added to a reaction mixture containing 168μl of 0.1mol/l Tris-HCl (pH 7.4), 218μl saline

and the extract (0 – 100μl). The reaction mixture was incubated for 5 min before the addition of

13μl of 0.25% 1: 10-phenanthroline (w/v).The absorbance was subsequently measured at 510 nm

in a spectrophotometer. The Fe2+ chelating ability of the extract was subsequently calculated as

percentage of the control.

3.2.4 Inhibition of lipid peroxidation and thiobarbituric acid reactions

Albino rats were immobilized by cervical dislocation and the pancreas was rapidly

isolated and placed on ice and weighed. This tissue was subsequently homogenized in cold saline

(1/10 w/v) with about 10-up-and –down strokes at approximately 1200 rev/min in a Teflon glass

homogenizer. The homogenate was centrifuged for 10 min at 3000 × g to yield a pellet that was

discarded, and the low-speed supernatant (S1) was kept for lipid peroxidation assay (Belle et al.

2004). The lipid peroxidation assay was carried out using the modified method of Ohkawa et al.,

(1979). Briefly 100µl S1 fraction was mixed with a reaction mixture containing 30µl of 0.1M pH

7.4 Tris – HCl buffer, sample (0 – 100µl) and 30µl of 250µM freshly prepared FeSO4. The

volume was made up to 300µl by water before incubation at 37 oC for 1hr. The color reaction

was developed by adding 300µl 8.1% SDS (Sodium dodecyl sulphate) to the reaction mixture
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containing S1, this was subsequently followed by the addition of 600µl of acetic acid/HCl (pH

3.4) mixture and 600µl 0.8% TBA (Thiobarbituric acid). This mixture was incubated at 100oC

for 1hr. Thiobarbituric acid reactive species (TBARS) produced was measured at 532 nm and

expressed using MDA (Malondialdehyde) equivalent.

3.2.5 Determination of Ferric Reducing Antioxidant property

The reducing property of the samples was determined by assessing its ability to reduce

FeCl3 solution as described by Pulido et al. (2000). 2.5ml aliquot of the extract was mixed with

2.5ml of 200 mM sodium phosphate buffer (pH 6.6) and 2.5ml of 1% potassium ferricyanide.

The mixture was incubated at 50°C for 20 min and thereafter, 2.5ml of 10% trichloroacetic acid

was added. This mixture was centrifuged at 805g for 10 min; 5ml of the supernatant was mixed

with an equal volume of water and 1ml of 0.1% ferric chloride. The absorbance was measured at

700 nm in the spectrophotometer after allowing the solution to stand for 30 min. A graph of

absorbance against concentration of extract was plotted to observe the reducing property where

higher absorbance values indicated a higher reducing property. The reducing property was

subsequently calculated using ascorbic acid equivalent.

3.2.6 2, 2'-azino-bis (-3-ethylbenzthiazoline-6-sulphonate (ABTS˙+) scavenging ability

Trolox equivalent antioxidant capacity (TEAC) of the samples was determined by their 2,

2'-azino-bis(-3-ethylbenzthiazoline-6-sulphonate (ABTS˙+) scavenging ability according to the

method described by Re et. al.(1999). The ABTS˙+ was generated by reacting (7 mmol/l)

ABTS˙+aqueous solution with K2S2O8 (2.45 mmol/l, final concentration) in the dark for 16 h and

adjusting the absorbance at 734 nm to 0.700 in a spectrophotometer with ethanol. 0.2ml of

appropriate dilution of the extract was added to 2.0ml ABTS˙+ solution and the absorbance was
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measured at 734 nm in a spectrophotometer after 15 min. The trolox equivalent antioxidant

capacity was subsequently calculated using trolox as the standard.

3.2.7 1, 1-diphenyl–2-picrylhydrazyl (DPPH*) free radical scavenging ability

The scavenging ability of the extracts against DPPH* (1, 1-diphenyl–2-picrylhydrazyl)

free radical was evaluated as described by Gyamfi et al. (1999) with slight modifications. 1ml of

0.4mM DPPH* in methanol was mixed with 0.05ml of the extract. The mixture was left in the

dark for 30 min and the absorbance was measured at 516 nm in the spectrophotometer. The

DPPH* free radical scavenging ability was subsequently calculated as percentage of the control.

3.3 Data Analysis

The results of replicates were pooled and expressed as mean standard error and the least

significance difference (Zar, 1984) and one- way analysis of variance (ANOVA) will be

determined.
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CHAPTER FOUR

4.0 RESULT

The effect of gallic acid on α-glucosidase inhibitory property of acarbose (Figure 4.1)

revealed that 100% acarbose (S1) had significantly higher (P<0.05) inhibitory effect (66.2±0.7%)

than 100% gallic acid (S2; 43.9±0.7%). However, considering the combinations, a combination

of 50% acarbose and 50% gallic acid (S3) showed the highest significant (P<0.05) inhibitory

effect (65.7±1.4%), which was not significantly different (P>0.05) from the inhibitory effect of

100% acarbose.

The effect of gallic acid on α-amylase inhibitory activity of acarbose is presented in

figure 4.2. The result reveals that 100% acarbose (S1) had significantly higher (P<0.05) enzyme

inhibitory effect (82.8±0.7%) than 100% gallic acid (S2; 49.0±1.4%). It also showed that a

combination of 75% acarbose and 25% gallic acid (S4) had the highest significant (P<0.05)

inhibitory effect (82.2±1.6%) of the various combinations; there was however, no significant

difference (P>0.05) in the inhibitory effect of S4 and S1.
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Figure 4.1: Effect of Gallic acid on α- Glucosidase inhibitory ability of Acarbose (AC) in vitro.

* mean values are significantly different (P<0.05) compared to S1

# mean values are significantly different (P<0.05) compared to S2

S1= 100% Acarbose (25μM)
S2= 100% Gallic acid (25μM)
S3 = 50% Acarbose + 50% Gallic acid
S4 = 75% Acarbose + 25% Gallic acid
S5 = 25% Acarbose + 75% Gallic acid
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Figure 4.2: Effect of Gallic acid on α- Amylase inhibitory ability of Acarbose in vitro.

^ mean values are significantly different (P<0.05) compared to S1

# mean values are significantly different (P<0.05) compared to S2

S1= 100% Acarbose (25μM)
S2= 100% Gallic acid (25μM)
S3 = 50% Acarbose + 50% Gallic acid
S4 = 75% Acarbose + 25% Gallic acid
S5 = 25% Acarbose + 75% Gallic acid
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The result of the Fe2+ chelating ability as shown in figure 4.3, revealed that 100%

acarbose (S1) had significantly higher (P<0.05) chelating ability (80.9±1.3%) compared to 100%

gallic acid (S2; 52.3±3.2%). However, considering the combinations, a combination of 75%

acarbose and 25% gallic acid (S4) had the highest chelating ability (90.5±0.6%) compared to

other combinations, but was not significantly different (P>0.05) from the chelating ability

(80.9±1.3%) of the combination of .25% acarbose and 75% gallic acid (S5).

Incubation of rat’s pancreas homogenates in the presence of Fe2+ induced a significant

(P<0.05) increase (152.6±0.7%) in the malodialdehyde (MDA) content (Figure 4.4). However,

introduction of all the samples (S1-S5) inhibited lipid peroxidation in thee pancreatic tissue

homogenate by causing a significant (P<0.05) reduction in the MDA content; nevertheless, there

was no significant difference (P>0.05) in the inhibitory effects of 100% acarbose (S1;

61.7±2.2%) and 100% gallic acid (S2; 64.8±0.7%). Considering the combinations, a combination

of 50% acarbose and 50% gallic acid (S3) caused the highest significant (P<0.05) reduction in

the MDA content (56.6±0.7%).
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Figure 4.3 Effect of Gallic acid on Fe2+ chelating ability of Acarbose in vitro

* mean values are significantly different (P<0.05) compared to S1

# mean values are significantly different (P<0.05) compared to S2

S1= 100% Acarbose (25μM)
S2= 100% Gallic acid (25μM)
S3 = 50% Acarbose + 50% Gallic acid
S4 = 75% Acarbose + 25% Gallic acid
S5 = 25% Acarbose + 75% Gallic acid
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Figure 4.4 Effect of Gallic acid on Inhibition of Fe2+ induced lipid peroxidation in Rat’s
pancreas (in vitro) by Acarbose

* mean values are significantly different (P<0.05) compared to S1

# mean values aresignificantly different (P<0.05) compared to S2

S1= 100% Acarbose (25μM)
S2= 100% Gallic acid (25μM)
S3 = 50% Acarbose + 50% Gallic acid
S4 = 75% Acarbose + 25% Gallic acid
S5 = 25% Acarbose + 75% Gallic acid
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The ferric reducing antioxidant properties of the samples (S1-S4) were presented as

ascorbic acid equivalent (AAE) figure 4.5. The result revealed that 100% acarbose had the

highest significant (P<0.05) reducing property (319.7±26.9 mgAAE/g) compared to 100% gallic

acid (162.1±22.5 mgAAE/g). However, a combination of 25% acarbose and 75% gallic acid (S5)

had the highest significant (P<0.05) reducing property (403.2±11.4 mgAAE/g) compared to the

other combinations, while the reducing property of the combination of 50% acarbose and 50%

gallic acid (S3; 321.9±10.1 mgAAE/g) showed no significant difference (P>0.05) to that of

100% acarbose.

The result of the DPPH free radical scavenging ability (Figure 4.6) revealed that 100%

gallic acid (S2) had significantly higher (P<0.05) scavenging ability (69.2±0.5%) compared to

100% acarbose (S1; 42.5±0.3%). However, a combination of 50% acarbose and 50% gallic acid

(S3) has the highest significant (P<0.05) scavenging ability (73.2±0.1%), but not significantly

different (P>0.05) from the scavenging ability (72.1±0.1%) of the combination of 25% acarbose

and 75% gallic acid (S5).

ABTS+ scavenging ability presented as trolox equivalent antioxidatant capacity (Figure

4.7) revealed that there was no significant difference (P>0.05) in the ABTS* scavenging ability

of all the samples (S1= 25.67±3.55 mmolTEAC/g; S2= 26.61±3.55 mmolTEAC/g;

S3=25.69±3.55 mmoLTEAC/g; S4= 26.63±3.55 mmoLTEAC/g; S5= 26.67±3.55

mmoLTEAC/g).
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Figure 4.5 The effect of Gallic acid on Ferric Reducing Antioxidant Property of Acarbose in
vitro.

* mean values are significantly different (P<0.05) compared to S1

# mean values are significantly different (P<0.05) compared to S2

S1= 100% Acarbose (25μM)
S2= 100% Gallic acid (25μM)
S3 = 50% Acarbose + 50% Gallic acid
S4 = 75% Acarbose + 25% Gallic acid
S5 = 25% Acarbose + 75% Gallic acid
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Figure 4.6 Effect of Gallic acid on DPPH Radical Scavenging ability of Acarbose in vitro.

* mean values are significantly different (P<0.05) compared to S1

# mean values are significantly different (P<0.05) compared to S2

S1= 100% Acarbose (25μM)
S2= 100% Gallic acid (25μM)
S3 = 50% Acarbose + 50% Gallic acid
S4 = 75% Acarbose + 25% Gallic acid
S5 = 25% Acarbose + 75% Gallic acid
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Figure 4.7 Effect of Gallic acid on ABTS Radical Scavenging ability of Acarbose in vitro.

S1= 100% Acarbose (25μM)
S2= 100% Gallic acid (25μM)
S3 = 50% Acarbose + 50% Gallic acid
S4 = 75% Acarbose + 25% Gallic acid
S5 = 25% Acarbose + 75% Gallic acid
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CHAPTER FIVE

5.0 DISCUSSION, CONCLUSION AND RECOMMENDATION

5.1 DISCUSSION

Hyperglycemia is a condition of abnormal rise in blood glucose level and is an etiology

of type-2 diabetes; a disease caused by insulin resistance (Oritz- Andrade et al., 2007; Jaspinder,

2014). As hyperglycemia plays an important role in the progression of diabetes and diabetic

complications, control of postprandial hyperglycemia has been shown to be a practical way in

the management of diabetes and its complications arising from oxidative stress (Oritz- Andrade

et al., 2007). Pancreatic α- amylase is involved in the breakdown of starch into disaccharides and

oligosaccharides before intestinal α-glucosidase catalyzes the breakdown of disaccharides to

liberate glucose which is later absorbed into the blood circulation. Inhibition of the α- amylase

and α-glucosidase has been suggested to slow down the breakdown of starch in the

gastrointestinal tract, which reduces the amount of glucose absorbed into the circulation (Oboh et

al., 2010). Various synthetic drugs such as acarbose are being used to reduce the postprandial

hyperglycemia but several side effects are observed during long term use (Chakrabarti and

Rajagopalan, 2002; Kimmel and Inzucchi, 2005). Therefore combinations of these drugs with

diets rich antidiabetic and antioxidant phytochemicals such as phenolics, could help produce

synergistic effects at reducing postprandial rise in blood glucose level while at the same time,

offering possible reduction in the attendant side effects of these synthetic drugs. This is more so

because previous studies have reported the antidiabetic and antioxidant properties of phenolic

rich food sources (Ogunmodele et al., 2012; Mhbele et al., 2015).

The study revealed that acarbose, gallic acid and their various combinations caused the

inhibition of both α- amylase and α-glucosidase activities in vitro with the 100% acarbose
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exhibiting stronger inhibitory activities than the 100% gallic acid. A previous report has shown

that acarbose serves as a strong inhibitor of enzymes associated with carbohydrate hydrolysis

compared to phenolic compounds (Ademiluyi and Oboh, 2013). Specifically, as presented in

figure 4.1, the combination of acarbose and gallic acid in equal proportions had a higher α-

glucosidase inhibitory effect compared to 100% acarbose, a drug known to be a strong inhibitor

of α-glucosidase. Therefore, this combination could be said to be synergistic, and could hence,

serve as possible combinatory therapy in preference to 100% Acarbose, this is to possibly reduce

the several side effects associated with the use of acarbose.

Furthermore, the inhibitory effect of acarbose, gallic acid and their various combinations

on the α-amylase (Figure 4.2), shows that acarbose inhibits α-amylase more significantly

stronger than it inhibits α-glucosidase. Nevertheless, it exhibits a stronger inhibiting property

compared to gallic acid, which showed mild inhibition of α-amylase. This observations could be

linked to the deleterious side effects of acarbose and also in agreement with previous reports

which indicated that excessive inhibition of pancreatic α-amylase could result in the abnormal

bacterial fermentation of undigested carbohydrates in the colon and therefore mild α-amylase

inhibition activity is desirable (Shai et al., 2010). The result then therefore suggests that since the

combination of acarbose and gallic acid at equal proportion serves as mild inhibitor of α-

amylase and strong inhibitor of α- glucosidase, it could be of great therapeutic importance in

addressing the side effects associated with acarbose in the management of type 2 diabetes which

is linked with excess inhibition of α- amylase. Also, the combination of acarbose and gallic acid

at the ratio 75:25 shows a synergistic inhibition of α- amylase. The inhibition of the enzymes

using the various combinations could be very effective in reducing the postprandial increase in
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the glucose level, hence reduces oxidative stress, and eventually prevents diseases associated

with oxidative stress such as diabetes.

Also, as presented in figure 4.3, the samples were able to chelate Fe2+, with the

combinations of acarbose and gallic acid in the ratio of 75:25 and 25:75 being more potent in the

chelation of Fe2+. Nevertheless, 100% acarbose also shows a significantly higher chelating

ability compared to 100% gallic acid. Fe2+ catalyzes one electron transfer reactions that generates

reactive oxygen species (ROS), such as the OH, which is formed from H2O2 through the fenton

reaction. Iron causes lipid peroxidation and also decomposes the lipid peroxides, which leads to

the generation of peroxyl and alkoxyl radicals which favours the propagation of lipid

peroxidation (Ademiluyi and Oboh, 2013). Furthermore, the incubation of isolated rat’s

pancreatic homogenates in the presence of Fe2+ caused a significant (P<0.05) increase in the

malondialdehyde (MDA) content. Previous studies have shown that incubation of rat tissues in

the presence of 25μm FeSO4 solution caused a significant increase in their MDA content (Oboh

et al., 2007; Ademiluyi and Oboh, 2013). However, the introduction of acarbose, gallic acid and

their various combinations caused significant (P> 0.05) decrease in the MDA content of the

incubated pancreatic tissue homogenate as shown in figure 4.4. The possible mechanisms

through which the sample protects against lipid peroxidation could be by Fe2+ chelation (Oboh et

al., 2007). Therefore, the decrease in the pancreatic MDA content by acarbose, gallic acid and

their various contributions could be attributed to the Fe2+ chelating properties. Moreover, this

study reveals that acarbose, gallic acid and their various combinations were able to protect the

pancreas against Fe2+- induced lipid peroxidation. However, a combination of 50% acarbose and

50% gallic acid had the highest inhibitory effect on MDA production.
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According to Li et al. (2008), insulin secreting organ (pancreatic β- cells) is vulnerable to

oxidative damage caused by the ROS due to their limited antioxidant defense systems.

Antioxidants as diets, supplements or as nutraceuticals could help protect against the oxidative

damage and thus prevents diabetes and its complications. Persistence hyperglycemia may induce

free radical production via glycation and autoxidation. This free radical production contributes to

β- cells destruction in type 2 diabetes (Maria et al., 2007).

The ability of phytochemicals possessing antioxidant property to reduce oxidative species

has been shown to be one of their antioxidative mechanisms (Islam, 2013). Reducing property of

the samples was assessed based on their ability to reduce Fe3+ to Fe2+. The result reveals that the

100% Acarbose exhibits a higher ferric reducing ability than 100% gallic acid. Of the various

combinations, a combination of 25% acarbose and 75% gallic acid shows the highest reducing

property and hence, a synergistic effect. This observations could possibly be attributed to

synergistic chemical reaction between the phenolic acid (gallic acid) and acarbose.

Furthermore, this study also revealed that the samples scavenged DPPH free radicals.

100% gallic acid exhibited a higher radical scavenging ability than 100% acarbose, nevertheless,

a combination of 50% acarbose and 50% gallic acid showed the highest scavenging ability,

hence portraying a possible synergy in the DPPH free radical scavenging abilities of acarbose

and gallic acid. The antioxidant property of gallic acid has being reported (Adefegha et al.,

2015); hence, the presence of phenolic compound (gallic acid) in the various combinations could

have enhanced their DPPH scavenging abilities. The ability of gallic acids to act as free radical

scavengers is due to the presence of multiple hydroxyl groups in each compound which are able

to donate their protons to finally break the chain reaction of the free radicals (Van Acker et al.,

1996).
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ABTS is a water soluble free radical initiator that in the presence of reactive oxygen can

be oxidized to form a stable green radical ABTS+ (Zhang et al., 2012). Antioxidants have being

studied to react with ABTS+, thereby fading the reaction colour system (Zhu and Jiao, 2005).

The ABTS radical scavenging ability result (figure 4.7) reveals that there was no significant

difference in the ABTS* scavenging ability of all the samples (acarbose, gallic acid and their

various combiations). Nevertheless, the samples were able to scavenge the ABTS+ radical.

The ABTS+ and DPPH radicals scavenging abilities by gallic acid, acarbose and their

various combinations could be attributed to structure-function relationship. Both compounds

possess numerous hydroxyl groups, which have been well reported to contribute significantly

their free radicals scavenging ability. Notably, the various combinations showed synergistic

effect in the free radicals scavenging abilities and this could be as a result of the reaction

between their OH groups.

5.2 CONCLUSION

Inhibition of key enzymes associated with the hydrolysis of carbohydrate has been

reported to be involved in the management of type 2 diabetes. Several diabetic complications,

which have been noted to result from oxidative stress can be controlled by antioxidants.

Therefore, the combinations of gallic acid with acarbose could be employed in the management

of T2DM with the comparative advantage of possible reduction of the side effects of acarbose;

nevertheless the combination of 50% acarbose and 50% gallic acid seems the best combinatory

therapy for the management of type 2 diabetes mellitus.
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5.3 RECOMMENDATION

In view of the findings of this study, diets rich in gallic acid could serve as means of

managing diabetes. In cases of chronic diabetes where drugs are to be taken, diets rich in gallic

acid could be recommended with acarbose to reduce the side associated with the drug, and

hence, means of management of type 2 diabetes.
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APPENDIX

CALCULATIONS

DPPH radical scavenging ability (%)

% scavenging ability = (Absref- Abssam) / Absref* 100

Where,      Absref= Absorbance of Reference

Abssam= Absorbance of Sample

Fe²+ chelating ability (%)

% Fe²+ chelating ability = (Absref- Abssam) / Absref * 100

Where, Absref = Absorbance of Reference

Abssam = Absorbance of Sample

Ferric reducing antioxidant property (FRAP)

FRAP content = (Abssam Conc. Std)/(Absstd Conc.sam)

Where, Absstd = Absorbance of standard (Vitamin C)

Abssam = Absorbance of Sample

Conc.std = stockconcentration of Standard in mg/ml

Conc.sam = Stock Concentration of Sample in g/ml

ABTS* scavenging ability (mmol. TEAC/g)

% scavenging  ability ((Absref–Abssam) x 100

Where, Absref= Absorbance of Reference

Abssam = Absorbance of sample/ standard

Therefore, ABTS scavenging ability (mmol/g) = (% sam x Conc.std) / (%stdx Conc.samx TMW)

where, % std = percentage scavenging ability of  standard (Trolox)
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Enzyme Inhibition (%)

% Inhibition = (Absref- Abssam) / Absref * 100

Where, Absref = Absorbance of Reference

Abssam = Absorbance of Sample

Lipid peroxidation

% sample = (ABSsamplel/ABSbasal)*100

% induced (ABS induceed/ABSbasal)*100
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